
A

Information Flow Tracking meets Just-In-Time Compilation

CHRISTOPH KERSCHBAUMER, University of California, Irvine
ERIC HENNIGAN, University of California, Irvine
PER LARSEN, University of California, Irvine
STEFAN BRUNTHALER, University of California, Irvine
MICHAEL FRANZ, University of California, Irvine

Web applications are vulnerable to cross-site scripting attacks that enable data thefts. Information flow
tracking in web browsers can prevent communication of sensitive data to unintended recipients and thereby
stop such data thefts. Unfortunately, existing solutions have focused on incorporating information flow into
browsers’ JavaScript interpreters, rather than just-in-time compilers, rendering the resulting performance
non-competitive. Few users will switch to a safer browser if it comes at the cost of significantly degrading
web application performance.

We present the first information flow tracking JavaScript engine that is based on a true just-in-time
compiler, and that thereby outperforms all previous interpreter-based information flow tracking JavaScript
engines by more than a factor of two. Our JIT-based engine (i) has the same coverage as previous interpreter
based solutions, (ii) requires reasonable implementation effort, and (iii) introduces new optimizations to
achieve acceptable performance. When evaluated against three industry standard JavaScript benchmark
suites, there is still an average slowdown of 73% over engines that do not support information flow, but
this is now well within the range that many users will find an acceptable price for obtaining substantially
increased security.

Categories and Subject Descriptors: D.3.3 [Programming Languages]: Language Constructs and Fea-
tures; D.3.4 [Programming Languages]: Processors - Optimization; D.4.6 [Operating Systems]: Secu-
rity and Protection - Information flow controls; K.6.5 [Management of Computing and Information
Systems]: Security and Protection

General Terms: Design, Languages, Security

Additional Key Words and Phrases: JavaScript, Information Flow, Dynamic Language Security

1. MOTIVATION
Dynamically typed programming languages, in particular JavaScript (JS), have be-
come indispensable for powering modern web applications. As the only client-side exe-
cution environment supported by all major web browsers, JavaScript has become vir-
tually omnipresent. Today’s highly-interactive web applications rely on a performant
JavaScript interpreter backed up by a just-in-time compiler.

The browser-hosted execution model permits a web page to dynamically load
JavaScript code and other page content in response to user events. Pages using third-
party libraries integrate code from different domains within the same execution con-
text. This practice enables feature rich web applications at the same time that it opens
a door for attackers to inject code. Malicious code can steal sensitive user information,
such as authentication credentials or credit card numbers, without any observable dif-
ference in runtime behavior or layout.

Nikiforakis et al. [2012] show that 88.45% of web sites include at least one remote
JavaScript library and highlight the potential of such included scripts to perform ma-
licious actions without attracting attention from either web developers or end users.
Vulnerability studies consistently rank the code injection attack known as cross-site
scripting (XSS) highest in the list of the most prevalent type of attacks on web appli-
cations [OWASP 2012; The MITRE Corporation 2012; Microsoft 2012]. A recent em-
pirical study [Jang et al. 2010] of the top 50,000 Alexa sites found that: popular Web
2.0 applications like mashups, aggregators and sophisticated ad targeting are rife with
different kinds of privacy violating flows.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2 C. Kerschbaumer et al.

Web pages often include third-party library code fetched directly by the browser,
giving the page administrator no opportunities for screening or sanitizing the included
JS code. Even when a site self-hosts all of the application’s JS code, user-provided
data mixes with the site’s pages. Nava and Lindsay [2009] highlight the challenges of
server-side analysis techniques and conclude that they can not reliably prevent data
injection attacks. Security bugs within a web application provide a path from user-
provided data to active JavaScript code executed by subsequent visitors. Consequently,
monitoring the flow of information on the client is the most promising strategy to
counter unexpected code behavior and prevent information theft attempts.

Several recent approaches [Vogt et al. 2007; Just et al. 2011; Groef et al. 2012; Ker-
schbaumer et al. 2013] have shown that information flow tracking mitigates the short-
comings of current web security practices and successfully counters XSS-based infor-
mation theft attacks. Even though these dynamic tracking enhancements provide the
desired security, all of the previous approaches suffer from the drawback of incurring
performance penalties of at least 80%. Furthermore, they all integrate the tracking
logic in the JavaScript interpreter, which itself commonly performs around four times
worse than code generated by a just-in-time (JIT) compiler (cf. Section 6.1).

Currently, browser vendors compete for adoption by advertising JavaScript perfor-
mance. As a result of the “browser wars,” faster JavaScript virtual machines (VMs)
now enable web applications with large amounts of JavaScript code. Consequently,
the slowdown seen when integrating information flow into the JavaScript interpreter
represents a major obstacle to adoption. We meet this challenge by implementing dy-
namic information flow tracking in a JIT compiler. Our framework allows detection
of suspicious network traffic that sends data to a server other than that intended by
the application programmer. The detection occurs at runtime, catching the code “in
flagranti” when performing malicious actions such as data theft.

We first discuss limitations of current web security practices (Section 2), establishing
the case for information flow as a viable security technique. Next, we define the dif-
ferent types of information flows (Section 3) and clarify the capabilities of our system.
This paper makes the following contributions:

• To the best of our knowledge, we present the first dynamic information flow tracking
engine in a JIT compiler for a dynamically typed programming language.

• We present several optimizations (Section 5) that are essential to preserve the per-
formance gains when JIT compiling the information flow tracking logic.

• We evaluate our system (Section 6) along three dimensions:
– Efficiency: We show that our JIT-generated code for information flow track-

ing introduces, on average, 73% overhead (relative to the unmodified JIT com-
piler) on established JavaScript benchmark suites; SunSpider, V8, and Kraken,
making it 260% faster than the fastest published JavaScript information flow
tracking interpreter [Kerschbaumer et al. 2013].

– Correctness: We ensure that our JIT compiler performs accurate information
flow tracking by extending Mozilla’s regression test suite, demonstrating cor-
rect label propagation for binary operations, control-flow structures, eval, and
function calls.

– Applicability: We implement a web crawler that visits a random sample of 100
web pages from the Alexa Top one million to show that our JIT-generated code
for information flow tracking finds the same information flows as our informa-
tion flow tracking interpreter.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

Information Flow Tracking meets Just-In-Time Compilation A:3

2. THE THREAT OF EXECUTING THIRD PARTY CODE
To date, web applications use the same origin policy (SOP) [Mozilla Foundation 2008]
as a first line of defense against information theft. The SOP permits scripts access to
methods and properties when sharing the same origin and restricts access otherwise.
Unfortunately, rules of the SOP often clash with modern web application architecture,
because the SOP only applies to cross-frame communication. For example, mashups
intentionally combine third party libraries’ web services into a single page and employ
code that circumvents the SOP. Kerschbaumer et al. [2013] show that, within the Alexa
top 500, some pages contain information influenced by code originating from up to
six different domains is sent across domain boundaries. Verification and proof that
the mashup performs only the expected task and does not steal data is not available.
Hijacking just one commonly included script compromises the privacy of many web
users [Nikiforakis et al. 2012].

2.1. The Nature of Code Injection Attacks
Since servers deliver JavaScript as source text, most content and third-party library
providers compact their code by automatically shortening variable names, removing
all extra whitespace as well as line breaks so the code becomes as small as possible.
This practice shortens the transfer time for loading JavaScript, but has the side effect
of obfuscating the source code. Web authors are unlikely to audit compressed code
for security holes despite the fact that including it in the same execution context as
the web application grants it access to application internals. Consequently, a channel
through which attackers can inject code that steals sensitive user information remains
open and prevalent.

In addition to the risk of including such malicious third party code, we further dif-
ferentiate between two other forms of code injection attacks. Based on the method of
injection, we distinguish between:

• Non-Persistent (Reflected) attacks, that occur when client-provided code embedded
in HTTP query parameters and HTML form submissions is sent back to the user as
page content after processing by the web application servers.

• Persistent attacks, that occur when client-provided data is stored on the application’s
servers and is reflected back to subsequent visitors.

In both of these cases, from the client’s perspective, the origin of the attacker code is
the same as that of the web application itself, meaning that the SOP can not prevent
the attack. Additional security requires a more powerful, behavior-focused mechanism,
such as information flow tracking.

2.2. Threat Model
We assume that an attacker has the ability to inject code into a web application. The
attacker accomplishes injection by exploiting a XSS vulnerability or the ability to pro-
vide content for mashups, advertisements, libraries, etc. which other sites include. To
collect the stolen data, we assume that the attacker controls their own web host. The
attacker practices only code injection techniques and does not resort to packet sniffing,
network interception, or control of the application servers.

2.3. Provided Security
Our modified web browser protects against several information theft attacks, includ-
ing, but not limited to:

• Sensitive Data Theft Attacks: By sending a GET request to a server under the at-
tacker’s control, the attacker can steal information in the URL of an image request:

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 C. Kerschbaumer et al.

elem.src = "evil.com/pic.png?" + credit_card_number;

The attacker uses the request for the image as a channel to steal the user’s credit
card number as a payload in the GET request. Merely changing the URL targeted by
the src attribute of an image triggers loading of the image.

• Keylogging Attacks: Similarly, to steal a username and password combination, an
attacker might craft code that logs keystrokes by registering an event handler:
document.onkeypress = listenerFunction;

The listener function records the user’s keystrokes and sends them to the attacker’s
server through an HTTP request.

• Cookie Stealing Attacks: Furthermore, if a script can access cookies, then an at-
tacker can also steal a session cookie between the browser and an honest site by
concatenating the document.cookie to the URL of the image request. The stolen
cookie allows the attacker to impersonate the user and hijack the user’s session.

2.4. Sample Attack: Stealing Form Data
An HTML form provides a page with data entry fields that allow a user to enter text
such as a username and password. Once a user submits the form, the browser sends
the data to the server. Virtually all web applications rely on login fields to authen-
ticate their users. If an attacker manages to inject code into a web application that
contains a login form, the attacker’s script can read a user’s credentials and send them
to an attacker-controlled server. Later, the attacker may use the stolen credentials to
impersonate users of the web service.

1 // place hidden image on the page
2 var pixel = "";
3 document.write(pixel);
4
5 function stealFormData(type , value) {
6 var payload = "url=" + document.domain + "&" + type + "=" + value;
7 document.getElementById (" pixel ").src = "http ://www.attacker.com/pixel.png?" + payload;
8 }
9

10 // add stealFormData to all forms on page
11 for (var i = 0; i < document.forms.length; i++) {
12 for (var j = 0; j < document.forms[i]. elements.length; j++) {
13 var elem = document.forms[i]. elements[j];
14 elem.addEventListener ("blur", // triggered when element loses focus
15 function() { stealFormData(this.type , this.value) }, false);
16 }
17 }

Listing 1: Example attack code that steals login form data from a web page.

Listing 1 shows exploit code an attacker might use to steal credentials from the
login form of a web page. The attack script first loads an image (line 2) supplied by a
server under the attacker’s control. The attacker designs the image to avoid perceptible
changes in page layout. Few users will notice the placement of a single transparent
pixel, but the attacker can use the GET request as a channel to steal confidential page
data whenever the image is reloaded from the server.

The attacker knows users will fill out the form and registers (lines 14, 15) a blur-
event handler on all forms elements on the page. When a form element loses focus it
triggers a call to the blur-event handler. The handler, stealFormData defined on line 5,
first encodes information about the page domain and contents of the form element

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

Information Flow Tracking meets Just-In-Time Compilation A:5

which triggered the event in the payload variable. Then it updates the src attribute
of the image with a URL containing the payload. This update causes the browser to
automatically reload the image, sending the sensitive information in the URL of the
image request.

1 [01/ Jan /2012:21:34:10] "GET /pixel.png?url=www.bank.com&text=alice HTTP /1.1"
2 [01/ Jan /2012:21:34:12] "GET /pixel.png?url=www.bank.com&password=bob69 HTTP /1.1"

Listing 2: Log of attacker.com from the running example.

By inspecting the server request logs, the attacker can reassemble the captured form
data. Listing 2 contains some example entries of image requests. The attacker can
clearly identify a user of www.bank.com with login ‘alice’ having the password ‘bob69’.

The webpage About The Open Web Application Security Project (OWASP [2013])
hosts an extensive list of XSS vulnerabilities that provides a detailed description of
all the different kinds of XSS attacks.

3. TYPES OF INFORMATION FLOWS
Information can flow through a program as a result of either data-flow dependence
or control-flow dependence [Denning and Denning 1977]. We examine both of these
dependencies to illuminate the ways that an attacker, who manages to craft and in-
ject malicious code, can steal information. The categorization of information flows also
allows us to clarify the capabilities of our implementation.

3.1. Explicit Information Flows
An explicit flow occurs as a result of a data-flow dependence. Table I breaks this cat-
egory down into two classes: direct; corresponding to an immediate dependence; and
indirect; corresponding to a transitive dependence.

Category Class Example Flow Required Analysis

Explicit
Direct b = a a ⇒ b Dataflow

Indirect b = foo(_, a, _)
c = bar(_, b, _)

a ⇒ c Dataflow (transitive)

Table I: Explicit Information Flows.

Explicit direct information flows occur when a value is influenced as a result of direct
data transfer, such as an assignment. An intra-procedural, data-flow analysis suffices
for identifying these flows. Subexpressions involving more than one argument also
have an explicit direct information flow from all argument values to the operator’s
resulting value.

Explicit indirect information flows occur as the transitive closure of direct flows.
Identification of indirect flows in general requires inter-procedural data-flow analy-
sis. The code example for indirect flows in Table I shows the transitive nature of this
analysis via a functional dependence between values.

3.2. Implicit Information Flows
An implicit flow is the result of a control-flow dependence. Again, Table II breaks this
category down into two classes: direct, corresponding to an immediate dependence
trackable at runtime; and indirect, corresponding to a transitive dependence.

Implicit direct information flows occur when a value depends on a previously taken
control-flow branch at runtime. Identification of this dependence requires a tracked

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 C. Kerschbaumer et al.

Category Class Example Flow Required Analysis

Implicit

Direct

if (a)
b = 1

else
b = 0

a ⇒ b Control Flow (dynamic)

Indirect

c = true
b = true
if (a)

b = false
if (b)

c = false

a ⇒ c Control Flow (static)

Table II: Implicit Information Flows.

program counter and a recorded history of control-flow branches taken during pro-
gram execution. We refer to systems that track the program counter to propagate de-
pendence information as “dynamic information flow tracking” systems.

Implicit indirect information flows occur when a value depends on a control-flow
branch not taken during program execution. Because the dependence follows code
paths not taken at runtime, these flows are difficult to detect in dynamic programming
languages. Unfortunately, even static languages include features, such as object poly-
morphism and reference-returning functions, that make the receiver of an assignment
or method call unknown at compile time. Dynamic programming languages, such as
JavaScript, include first-class functions, runtime field lookup along prototype chains,
and the ability to load additional code at runtime via eval. These features prohibit
even a runtime analysis from identifying all the values possibly influenced in all alter-
native control-flow branches.

3.3. Tracking Capabilities of our Prototype System
Our system tracks information flows across all explicit and implicit direct flows. When
the VM evaluates an expression, it tags the resulting value with a label indicating the
principals that influenced its creation.

Guha et al. [Guha et al. 2010] reduce JS to a succinct, small-step operational se-
mantics that helps us to clarify our tracking capabilities. We extend their notation to
include security labels such that x : l denotes an expression or value x with the label
l and l1 t l2 is the join (union) of principals represented by l1 and l2 respectively. For
example, adding two numbers constitutes an explicit flow that we label as follows:

e1 : l1 + e2 : l2 ↪→ v : l1 t l2 (1)
Attackers can also generate implicit flows from confidential to public variables us-

ing the control-flow structures in JavaScript [Guha et al. 2010, p. 135]. The label of
a statement within a branch acquires all the principals of the predicate controlling
the branch in addition to the principals affecting the expression. When the predicate
evaluates to true, we have:

if (etrue : lpred) { e1 : l1 } else { e2 : l2 } ↪→ e1 : lpred t l1 (2)

while (e1 : l1) { e2 : l2 } ↪→ e2 : l1 t l2; if (e1 : l1) { while (e1 : l1) { e2 : l2 } }
else { undefined : ⊥ } (3)

Since our tracking mechanism operates at runtime, we do not track implicit indi-
rect flows arising from control-flow branches that are not executed. Austin and Flana-

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

Information Flow Tracking meets Just-In-Time Compilation A:7

gan [2012] gives an example and compares the published mitigation strategies. Un-
fortunately, we think none of these solutions is a silver bullet. Two of the strate-
gies [Zdancewic 2002; Austin and Flanagan 2010] degrade user experience by halting
execution to prevent implicit indirect flows. The third strategy [Vogt et al. 2007] uses
a conservative labeling strategy that leads to label creep [Sabelfeld and Myers 2003]
in all but trivial cases. Rather than study this design trade-off, we focus solely on the
performance impact of JIT compiling the information flow tracking.

4. COMPOSITION OF AN INFORMATION FLOW FRAMEWORK
Whether an interpreter or JIT-compiled code performs information flow tracking, the
implementation requires supporting data structures and other modifications to the
runtime VM. In this section, we describe the data structures that support multiple
security principals necessary for representing the many different domains that can
occur on a single web page. We also show how the system encodes labels into a tagged
union, allowing propagation of these labels using efficient bit arithmetic.

[101]
{good.com, evil.com}

[001]
{good.com}

[010]
{other.com}

[100]
{evil.com}

[110]
{other.com, evil.com}

[011]
{good.com, other.com}

[111]
{good.com, other.com, evil.com}

[000]
{systemlabel}

0153163 47

ppp0ppppxxxx0000

iiiiiiiixxxxffff

Value

Pointers

Integers

00020000xxxx0000 null

00060000xxxx0000 false

00070000xxxx0000 true

000a0000xxxx0000 undefined

dddddddddddd0001

Doubles

ddddddddddddfffe

00000000xxxx0000

Immediates

empty

00040000xxxx0000 deleted

...

Type information / Tag
Label encoding

⊥

Fig. 1: (left) Label lattice for domains good.com, other.com, and evil.com.
Fig. 1: (right) Label encoding using bits 32-47 in JSValues, encoding 16 domains.

4.1. Incorporating a Label Lattice
Within the JavaScript VM, data and objects originating from different domains may
interact, creating values that are influenced by multiple domains. To model this be-
havior, we take inspiration from Myers’ decentralized label model [Myers and Liskov
2000] and represent security labels as a lattice join over domains (Figure 1 [left]).

A registry stores a mapping from web security principals (domain name strings) to
unique bit positions. Taken as a whole, these bit positions form a bit vector that acts
as a confidentiality label, holding up to 16 different domains.

4.2. Encoding Labels in JSValues

WebKit already achieves high performance by using a type-tagged union, called
JSValue, to represent immediate values, object references, and numbers. We repur-

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 C. Kerschbaumer et al.

pose 16 of the bits within the JSValue representation to hold a security label. This
modification allows for a low performance overhead encoding that packs both the label
and the typed value within the same 64 bit word.

Pointers/Immediates: JSValues starting with the highest 16 bits all set to zero (see
Figure 1 [right]) indicate a pointer or immediate type. The VM uses the lowest four bits
to distinguish pointers from immediates. Pointers have alignment with these bits all
set to zero, while immediate values are non-zero entries in the same lowest four bits:
empty:0x00, null:0x02, deleted:0x04, false:0x06, true:0x07, and undefined:0x0a.

In WebKit, addresses occupy 46 bits (bits 0–47). Unfortunately, this design does not
leave any space to directly encode a label within JSValues. Hence, we modify allocation
of the garbage-collected heap so that it fits within a 32 bit address space. This change
limits the heap to be 4GB in size, but frees 16 bits of JavaScript object references for
a security label (bits 32–47, marked as xxxx in Figure 1 [right]). This modification
allows encoding of up to 16 different domains and permits efficient bit arithmetic for
the frequent label join operation, which is essential for performance when propagating
information flow. At the expense of maximum heap size, we gain an efficient labeling
of virtual machine values.

Integers/Doubles: Values starting with the highest 16 bits all set to one indi-
cate an integer value type. ECMAScript [ECMA International 2009] specifies that the
JavaScript operators only deal with 31 bit integers, leaving bits 32–47 unused by the
original WebKit encoding. This arrangement means that same set of bits as used pre-
viously remain free for encoding a label on integers.

Doubles in the ECMAScript specification follow the double-precision 64 bit format
as specified in the IEEE Standard for Binary Floating-Point arithmetic [IEEE 2008].
Therefore, WebKit reserves all values with highest 16 bits between 0x0001 and 0xfffe
for doubles. Unfortunately, this encoding uses all available bits for the double value,
leaving no room for a label. To compensate for this shortcoming, our system treats
doubles conservatively by implicitly tagging them with the highest security label in
the lattice.

4.3. Tracking Data Flow
Code and data originally tagged with different security principals may interact during
execution of a program. The encoding of labels within the lattice supports tagging a
single value as having been influenced by multiple principals. For every operation, the
information flow VM inspects the labels of all inputs. As formalized in Section 3.3,
it constructs a label representing the lattice join over all arguments and the current
execution context. The VM then attaches this label to the operation’s output value.

For an example of a situation where two principals influence a single value (simpli-
fied to omit the current execution context), consider the code snippet pub += secret;
where the variable secret originates from domain good.com (001) and the variable
pub originates from domain evil.com (100). To construct a label that represents this
confluence, the runtime VM performs a label join operation (via bitwise or) to obtain
the join of the domains good.com t evil.com (001|100). The updated variable pub then
carries the resulting label (101).

4.4. Tracking Control Flow
Information flow analysis that relies upon static typing (developed for languages such
as Jif [Myers et al. 2001]) is not directly applicable to dynamically typed programming
languages such as JavaScript. However, we adapt to this situation by implementing
a runtime tracking mechanism that propagates the influence that a branch in con-
trol flow has on operations within the branch. In this section, we show how recording

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

Information Flow Tracking meets Just-In-Time Compilation A:9

the history of the program counter supports information flow tracking of control-flow
dependencies. We also describe an efficient implementation using a stack of labels.

Our information flow VM tracks control-flow influences by maintaining a label on the
program counter. Each time a JavaScript program executes a conditional branch, the
VM records this action by pushing the current program counter label onto a runtime
shadow stack, which we refer to as the pc-stack. The top of this stack carries the label
of the current execution context, providing an additional input to operations executed
within the conditional branch. The information flow VM tracks the influence that the
control-flow branch has on a particular value by joining the top of the pc-stack with
the labels attached to each operand’s other inputs. After execution of the branch has
finished, the VM pops the top label off the pc-stack, restoring the system to its previous
security context before the branch.

Pushing and popping labels on/off the pc-stack requires runtime knowledge of the
control-flow joins and branches within a JavaScript program. As the VM compiles a
script into its bytecode instruction sequence representation, it performs a concurrent
static analysis that inserts additional instructions into the sequence. These instruc-
tions carry out pc-stack operations, maintaining the appropriate stack height and se-
curity context label across control-flow joins and branches as the program executes.

4.5. Maintaining the Security Context
Before beginning execution, the JavaScript VM first compiles each function into an
instruction sequence. We modify the parser to insert additional instructions that track
and record control flow paths executed at runtime. We introduce three new bytecode
instructions that serve as convenient markers for control-flow branches and joins in
the instruction sequence of a JavaScript function. As illustrated in Figure 2, these
instructions perform the required push and pop operations of the pc-stack and thus
enable runtime control-flow tracking for both the interpreter and the JIT compiler
(Section 5.3). We create such a pc-stack during setup of each JavaScript stack frame.

L = pc-label before entering the secure region (branch in control flow
S = label of the predicate the control flow branches on

L

... ...

L
L

...

L ⊔ S

...

dup_pclabel join_pclabel popj_pclabel

L
L ⊔ S

L

Fig. 2: Maintaining the pc-stack using three new instructions.

(1) dup pclabel: The dup pclabel instruction duplicates the top of the pc-stack. Our
system inserts this instruction before every conditional branch and always pairs it
with a join pclabel instruction that performs an upgrade of the program counter
label after evaluating the boolean condition of the branch. We separate the pushing
on the pc-stack from upgrading the top label because loops repeatedly execute the
branch condition but retain their control-flow depth. In other words, this design
decision avoids unnecessary push operations onto the pc-stack and hence improves
performance. At least one corresponding popj pclabel instruction later marks the
end of the elevated label region.

(2) join pclabel: A join pclabel instruction upgrades the top of the pc-stack by join-
ing it with the label of a predicate value. A separate instruction for this operation

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 C. Kerschbaumer et al.

is necessary to support loop structures that continue or exit based on a boolean con-
dition evaluated at runtime. Because the condition depends on runtime evaluation,
each iteration through the loop may carry a different security label.
Our system retains the successive joins of all iterations as it progresses through
a loop. A side-effect of this design is that the evaluation of the last iteration in a
for-each loop over an array might occur under a security label higher in the lattice
than the first iteration. For example, this situation occurs when the array consists
of heterogeneously labeled fields.

(3) popj pclabel: The popj pclabel instruction requires two parameters:
• n, which specifies how many levels of control flow to pop, and
• j, which specifies how many further control-flow levels should be upgraded.

When the VM encounters a popj pclabel instruction, it first saves the current top
of the pc-stack, then it pops n levels, and finally joins j more levels using the previ-
ously saved label. This enables the information flow VM to conservatively upgrade
the context label of an entire function in the event of an unexpected divergence in
control flow, such as that caused by the break and continue statements (see List-
ing 3). Loops having more than one exit path (e.g., due to multiple break statements)
require a popj pclabel at each exit.

4.6. Examining the Security Context
In JavaScript, loop induction variables declared with the var keyword reside in the
function scope and remain accessible outside of the loop which they control. As shown
in Listing 3, an attacker can use this feature to construct a correspondence between
the induction variable (labeled lower in the security lattice) and a confidential value
(labeled higher in the lattice) by breaking out of the loop. Once the loop has terminated
early, the attacker returns the induction variable (still labeled lower in the lattice) and
leaks the value of the confidential variable.

1 function stealpin(secret) {
2 for (var i=0; i < 10000; i++) {
3 if (i == secret)
4 break;
5 }
6 return i;
7 }

Listing 3: Inferring the value of the variable secret by observing the change in control
flow using an implicit direct information flow.

JavaScript further complicates the context tracking issue by supporting labeled
break and continue statements that cause early exit from arbitrarily nested inner
loops. By performing this action all further operations carried out within the function
become tagged with the label under which the break or continue occurred.

We now examine, in greater detail, how the information flow VM inserts instruc-
tions into the instruction sequence. Listing 4 contains the instruction sequence for the
stealpin function shown in Listing 3.

[0] enter
[1] dup_pclabel // for (var i=0; ... ; ...) {
[2] mov r0, Int32: 0
[5] jmp 22(->27)
[7] dup_pclabel // if (i == secret) {
[8] eq r1, r0, r-8
[12] join_pclabel r1

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

Information Flow Tracking meets Just-In-Time Compilation A:11

[14] jfalse r1, 8(->22)
[17] popj_pclabel pop:1, join:2 // break
[20] jmp 16(->36)
[22] popj_pclabel pop:1, join:0 // }
[25] pre_inc r0 // for (... ; ... ; i++)
[27] less r1, r0 , Int32: 10000 // for (... ; i < 1000 ; ...)
[31] join_pclabel r1
[33] loop_if_true r1, -26(->7)
[36] popj_pclabel pop:1, join:0 // }
[39] ret r0 // return i

Listing 4: Instruction sequence of the stealpin function in Listing 3.

Immediately after entry, the stealpin function contains a loop that begins with the
dup pclabel instruction (offset 1) that pushes a new security scope for the loop body.
WebKit places the condition at the end of the loop body, so the join pclabel instruction
that upgrades the security scope corresponding to the loop belongs on offset 31. After
evaluating the condition, the loop body begins at offset 7.

The loop body consists of an if-statement that acts as a nested security scope. This
scope begins with a dup pclabel instruction (offset 7) and gets upgraded (offset 12)
after evaluation of the conditional (offset 8). Should the condition fail, control flow
branches to offset 22 which pops the pc-stack indicating the end of the if-statement.
When the condition succeeds, the body of the if executes the break statement. A
popj pclabel instruction (offset 17) precedes the jump (offset 20) that directs control
flow out of the loop. This instruction causes the information flow VM to pop the scope
corresponding to the if-statement (argument pop:1) and to upgrade two levels below
it (argument join:2), corresponding to the loop body and the function itself.

Regardless of the path through the loop, finishing with the normal exit or by follow-
ing the break statement, the loop ends with a popj pclabel instruction (offset 36) that
restores the pc-stack to the level it had before loop entry.

4.7. Browser Integration
Solely tracking the flow of information within the JS-engine only provides limited se-
curity against data theft attacks. The DOM, for example, provides an interface that
allows JS in a web page to reference and modify HTML elements as if they were JS
objects. Attacker-supplied JS code can use the DOM as a communication channel for
stealing information present in a web page. Our system prevents such data theft at-
tempts by labeling DOM objects based on the origin of their elements and attributes.
In this work however, we solely focus on JIT-compiling the information flow tracking
logic within the JS-engine and the accompanying performance gain. Kerschbaumer
et al. [2013] describes interaction of browser subsystems with the JS-engine.

5. JIT IMPLEMENTATION OF INFORMATION FLOW
Now that we have detailed how the information flow framework encodes labels and dy-
namically propagates them through both data and control flow at runtime, we present
the lower-level implementation which allows the JIT compiler to perform this tracking
at substantially improved speeds. Our implementation adds approximately 4,000 lines
of C++/assembly code to WebKit’s codebase.1

5.1. Encoding Labels
When implementing information flow logic in the JIT compiler, native functions im-
pose an additional design constraint. WebKit’s JIT compiler and JavaScript inter-
preter require a unified representation that supports passing JSValues between native

1Calculated by performing a git diff base | grep "^+[^+]" | wc -l

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 C. Kerschbaumer et al.

functions (implemented in C++) and JIT-compiled JavaScript functions. However, the
tagged union representation results in high performance, so we find no need to change
the label encoding from that introduced in Section 4.2. The label still resides in bits
32–47 of integers, pointers, and immediates, while doubles remain implicitly labeled
with the highest available label in the lattice.

5.2. Tracking Data Flow in the JIT
We modify the JIT compiler in WebKit to track information flow in all binary oper-
ations: add, sub, mul, div, mod, lshift, rshift, urshift, bitand, bitor, and bitxor.
It is worth noting that JS semantics allow for ad-hoc polymorphism, i.e., using the
arithmetic add operator to perform both, numeric addition and string concatenation.

1 // join the labels of RAX and RBX
2 MOV R11 , RAX // mov first value (including label) into scratch register
3 OR R11 , RBX // bitwise or first value (including label) with second value
4
5 // join the cached top of the label stack
6 MOV R12 , [RSP+60h] // load the cached top -label of the pc-stack into scratch register
7 OR R11 , R12 // bitwise or the top -label of the pc -stack with operand labels
8
9 // mask bits , so only label bits remain in R11

10 MOV R12 , 0FFFF00000000h // load the label -bit -mask into scratch register
11 AND R11 , R12 // bitwise and label -bit -mask with accumulated label
12
13 ADD EBX , EAX // perform the 32 bit add operation
14
15 OR RBX , R11 // bitwise or the result with the joined label

Listing 5: Label propagation for the numeric add instruction, with left and right integer
operands in registers RAX and RBX respectively. Registers R11 and R12 serve as scratch
registers for computing the labels encoded in bits 32–47.

To illustrate how the JIT compiler performs label propagation, we provide a simpli-
fied portion of the assembly code emitted by the JIT compiler for integer addition in
Listing 5. We split this binary operation into three parts and give a precise description
of each computation step:

(1) Joining Operand Labels: As illustrated, RAX holds the left operand and RBX holds the
right operand. We use registers R11 and R12 as scratch registers for the label prop-
agation calculation. Because the calculation of the addition and the propagation of
the label must be kept separate, the code first copies the value of the left operand
(including its label) into register R11 (line 2). Without masking out the label, the VM
joins in the value (and label of) the right operand using a bitwise or (line 3). At this
point, R11 contains the join of the labels of both operands together with the bitwise
or of the values.
The label on the result of the addition must also include the label from the current
context. Because the top of the pc-stack provides the security context to every binary
operation, the JIT VM caches it in the JITStackFrame (Section 5.3). Line 6 retrieves
the label from the cache into register R12. The VM joins in this context label using
another bitwise or, accumulating the result in register R11 (line 7).
Register R11 now contains the final label that will be attached to the result of the
addition. However, some non-label bits within the register are non-zero, as a result
of using the operand values directly. Unfortunately, x86 64 architecture does not
support 64 bit immediate operands for the bitwise and operator, so masking out the
value bits requires two steps. First, the VM loads a label mask, which has only bits

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

Information Flow Tracking meets Just-In-Time Compilation A:13

32–47 set to one, into register R12 (line 10). Next, the mask and accumulated label
undergo bitwise and, leaving only the label’s bits active in register R11 (line 11).

(2) Performing the Operation: After calculating the label, the JIT compiler performs the
addition of the two operands (line 13) with a 32 bit add instruction. To simplify the
example, we elide an overflow check that occurs immediately after the addition. In
practice, this check makes use of the overflow and carry flags and transfers control
to a slow path that coerces the input integers into doubles.

(3) Assigning the Accumulated Label: Assuming the addition finished without overflow,
the last step combines the accumulated label and the computed result value. We do
not have to mask out any active bits within the label field of the result value before
the label assignment because of two observations. First, the addition operation is
32 bits and only affects the value portion, not the label field. Second, any active
label bits in the result come from an input operand and form a strict subset of the
active bits in the accumulated label (register R11). Together, these properties allow
the VM to use bitwise or to apply a label to the result value in register RBX (line 15).

5.3. Optimizing Control Flow Tracking in the JIT
The steps taken to increase JIT compiler performance for tracking control flow in-
volved successive refinement. For example, WebKit’s JIT compiler does not fully im-
plement all of the bytecode instructions and often calls back into C++ to handle slow
paths. At one stage during development, the JIT compiler implemented our new byte-
code instructions (c.f. Section 4.5) through a callback to C++. This stage of implemen-
tation had a higher performance overhead than the final product.

Our information flow JIT compiler uses three techniques to enable fast tracking of
control-flow influence:

(1) Our JIT compiler pre-allocates memory for the pc-stack, just as an unmodified We-
bKit pre-allocates an array for the call-frame stack. Rather than allocating a small
pc-stack for each function frame, which negatively impacts runtime performance,
each JavaScript function call now reserves space on a global pc-stack for the num-
ber of labels that it requires for worst-case nesting depth. Reservation of this space
is as simple as incrementing a stack pointer in the pre-allocated array, analogous to
bump allocation in memory management.

(2) Our JIT compiler caches the top label of the pc-stack. Ordinarily, the label of the
current execution context is found by following a chain of references that starts at
the CallFrame pointer in the current StackFrame, traverses through the pc-stack
pointer in the current CallFrame and finally ends at an offset from the base of the
current pc-stack. Because all data-flow operations also join in the current execution
context label, the VM caches the top of the pc-stack in the StackFrame so that it
remains accessible through a fixed offset from the StackFrame. Figure 3 shows both
the chain of references and the cache location.
The JIT compiler updates this cache every time the top label of the pc-stack changes.
This update occurs at control-flow branches and joins and is less frequent than the
data-flow operations that access the top label.
Additionally, using such a caching mechanism allows us to avoid expensive updates
on top of the pc-stack if the label of the predicate and the cached label are identical.
As previously mentioned, the instruction join pclabel upgrades the top of the pc-
stack by joining it with the label of the predicate value. To avoid such unnecessary
updates, our JIT-compiled code first checks if the cached label in the JITStackFrame

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 C. Kerschbaumer et al.

FP

SP

...

L ⊔ S
L

CallFrame

L ⊔ S

PC-Stack

Cache Top of PC-Stack

JitStackFrame

PC-SP

PC-Stack

CodeBlock
ReturnPC

ScropeChain
Callee

CallerFrame
ArgsCount

CallFrame

Fig. 3: Interaction of native JITStackFrame, CallFrame, and PC-Stack.

and the label of the predicate are equal. If so, our system skips the expensive task
of following the pointers to update the top of the pc-stack because the top of the
pc-stack already holds the correct label.

(3) Our JIT compiler implements the instructions that maintain the pc-stack directly in
assembly. The JIT compiler takes as input the same instruction stream as the inter-
preter. When the JIT compiler encounters one of the pc-stack manipulation instruc-
tions (Section 4.5) it emits assembly code that performs the operation. Not only does
this code access the pc-stack through the appropriate reference path shown in Fig-
ure 3, but it also updates the cached top label when necessary. Cache updates only
occur in the join pclabel and popj pclabel instructions, because the dup pclabel
instruction modifies stack height but does not change the label on top.
Implementing the instructions that maintain the pc-stack in assembly
(dup pclabel, join pclabel, popj pclabel) avoids expensive callbacks into C++ at
runtime, allowing our JIT-compiler to increase speed by not having to, (i) save and
restore registers when calling into C++, and (ii) perform the expensive trampoline
jump to find the function entry point in C++.

Only by implementing all of these techniques we were able to achieve the low over-
head reported in this paper.

6. EVALUATION
In this section, we evaluate the performance gained by implementing the logic for
dynamically tracking information flow in JIT-compiled code. We also emphasize the
techniques we use to validate that the implemented logic correctly tracks the flow
of information. Finally, we distinguish the limitations that arise as implementation
artifacts from the fundamental limitations of the information flow approach.

WebKit contains an interpreter, JavaScriptCore (JSC), that executes a bytecode in-
struction sequence using direct threaded interpretation2. The WebKit project also con-
tains a template JIT compiler that compiles the bytecode stream and an optimizing JIT
compiler based on a program’s data-flow graph. We have not implemented information
flow in the optimizing JIT compiler, because it operates only on Macintosh operating
systems. All of the following benchmarks compare information flow implementations
of interpreter-only and JIT-only execution modes.

2In March 2012, JavaScriptCore changed to a low-level interpreter, implemented via a custom language
that generates the assembly for a direct threaded interpreter. Our benchmarks measure the performance of
the C++ version of JSC that predates this change.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

Information Flow Tracking meets Just-In-Time Compilation A:15

Overhead Language (implementation) Reference Benchmarks
80% JS Interpreter (64 bit labels) Kerschbaumer et al. [2013] SunSpider

100 – 200% JS Interpreter (64 bit labels) Just et al. [2011] V8
110 – 690% JS (rewriting during parse) Jang et al. [2010] meas. by visiting pages

120% JS Interpreter (data-flow only) Tran et al. [2012] SunSpider
136 – 560% JS Interpreter (only tags objects) Dhawan and Ganapathy [2009] SunSpider, V8

∼200% JS Interpreter (multi-execution) Groef et al. [2012] V8
none reported JS Interpreter (1 bit label) Vogt et al. [2007] no perf numbers given

14% Java (data-flow only) Enck et al. [2010] CaffeineMark
200% Java (JikesRVM) Chandra and Franz [2007] JavaGrande

1.6% – 26.7% C (instrumenting compiler) Nanda et al. [2007] LAMP-stack
24% – 1,120% C (instrumenting compiler) Lam and Chiueh [2006] C-Programs

1,900% x86 VM Yin et al. [2007] CPU Instruction level tainting

Table III: Performance Comparison of other Information Flow Frameworks

6.1. Effect on Performance
To demonstrate how JIT compilation of dynamic information flow tracking reduces
the performance impact within a VM, we execute three established JavaScript bench-
mark suites: SunSpider version 1.0 [SunSpider 2012], V8 version 6 [Google 2012], and
Kraken version 1.1 [Mozilla 2011]. We execute all benchmarks on a dual Quad Core
Intel Xeon E5462 2.80 GHz with 9.8 GB RAM running Ubuntu 11.10 (kernel 3.2.0)
and use nice -n -20 to minimize operating system scheduler effects. After running
each suite once for warm-up, we use 10 repetitions for each benchmark to get stable
results and report the geometric mean of these repetitions to discount outliers. Note
that the results for our benchmarks do not include the overhead for JIT compiling the
code since this happens during the warm-up run.

Previous implementations of information flow (cf. Table III) experience a handicap
by beginning with an unmodified interpreter that is already an average of 287% slower
than JIT-compiled code. On a relative basis, our system outperforms all of the previ-
ous work listed in Table III. Our JIT compiled information flow tracking system also
outperforms on an absolute basis because it is measured with respect to much faster
JIT-compiled code.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

3d−cube

3d−morph

3d−raytra
ce

access−binary−tre
es

access−fannkuch

access−nbody

access−nsieve

bitops−3bit−bits−in−byte

bitops−bits−in−byte

bitops−bitw
ise−and

bitops−nsieve−bits

contro
lflo

w−recursive

crypto−aes

crypto−md5

crypto−sha1

date−form
at−tofte

date−form
at−xparb

math−cordic

math−partia
l−sums

math−spectra
l−norm

regexp−dna

strin
g−base64

strin
g−fasta

strin
g−tagcloud

strin
g−unpack−code

strin
g−validate−input

geomatric
 mean

Benchmark

Fa
ct

or
 S

lo
w

do
w

n

Execution Mode

 Baseline Interpreter

 Flow Tracking Interpreter

 Flow Tracking JIT

Fig. 4: Detailed performance per SunSpider benchmark normalized by the
JavaScriptCore JIT compiler.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 C. Kerschbaumer et al.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

ai−astar

audio−b
eat−d

etection

audio−d
ft

audio−f
ft

audio−o
scillator

imaging−g
aussian−b

lur

imaging−d
arkroom

imaging−d
esaturate

json−p
arse−f

inancial

json−s
trin

gify−
tinderbox

stanford−
crypto−

aes

stanford−
crypto−

ccm

stanford−
crypto−

pbkdf2

stanford−
crypto−

sha256−it
erative

geomatric mean

Benchmark

Fa
ct

or
 S

lo
w

do
w

n

Execution Mode
 Baseline Interpreter
 Flow Tracking Interpreter
 Flow Tracking JIT

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

v8−c
rypto

v8−d
eltablue

v8−e
arley−b

oyer

v8−r
aytrace

v8−r
egexp

v8−r
ichards

v8−s
play

geomatric mean

Benchmark

Fa
ct

or
 S

lo
w

do
w

n

Execution Mode
 Baseline Interpreter
 Flow Tracking Interpreter
 Flow Tracking JIT

Fig. 5: Detailed performance for V8 (left) and Kraken (right) benchmark normalized
by the JavaScriptCore JIT compiler.

To provide a consistent basis for performance comparison, we implement informa-
tion flow tracking in WebKit’s interpreter and JIT compiler using the same label en-
coding and supporting data structures introduced in Section 4. Our tests measure the
performance of JIT-compiled tracking code vs. interpreter code in exclusive modes. As
illustrated in Figures 4 and 5 the average performance impact for our system (Sun-
spider 74%, V8 108%, and Kraken 38%) clearly demonstrates that JIT-compiled code
implementing dynamic information flow tracking outperforms the execution speed of
an unmodified interpreter. Hence, our implementation sets a new bar for dynamic in-
formation flow systems.

At the outset, we engineered and incorporated the information flow tracking logic in
the JSC interpreter. This effort gave us a deep understanding of WebKit’s JavaScript
VM and allows us to compare the relative performance impacts of implementing dy-
namic information flow tracking in the interpreter vs. the JIT compiler. Even when
implementing information flow in a JIT compiler, the overhead measured as percent-
age relative to the baseline does not necessarily correspond to that seen when im-
plementing the same framework within the JavaScript interpreter. For example, the
SunSpider benchmark shows an overhead of 137% in the interpreter, while the JIT
compiler shows only 74%. A full account of the performance on each individual bench-
mark (using the encoding and framework as described in this paper) can be found in
Appendix A.

Many of the benchmarks, such as regexp in V8 and the json family of tests in
Kraken, run with essentially the same speed as the unmodified JIT compiler. These
tests perform fewer control-flow branches and make a higher percentage of native code
calls compared to other tests. Meanwhile, the controlflow-recursive test in SunSpi-
der introduces the most overhead, at 346%, because it has a very large number of
executed branches in recursive function calls and conditional tests. These control-flow
constructs cause the dynamic information flow VM to perform additional work to main-
tain the pc-stack. Each time the VM recursively calls a function, branches on a condi-
tional, or iterates a loop, it executes the control-flow tracking instructions (Section 4.5),
incurring an overhead relative to an unmodified VM.

Overall, the low impact for the JIT-compiled information flow tracking logic (73% on
average, on compute intensive benchmarks) highlights the practicality of dynamic in-
formation flow as a security enhancement for the outdated JavaScript security model.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

Information Flow Tracking meets Just-In-Time Compilation A:17

Impact of Conservatively Labeling Doubles: As previously stated in Section 4.2,
the current format of doubles within WebKit does not allow directly encoding a label
within the representation of a double. All operations involving doubles implicitly carry
the highest label available at the time they execute. This conservative labeling strategy
might conceal the performance drawback for benchmarks focusing on doubles.

To show that this implementation detail has little performance impact, we report
the percentage of operations creating doubles vs. other JSValues for each of the three
benchmark suites. In SunSpider 4.7% of JSValues created are doubles, while in V8 and
Kraken fewer than 1% are doubles, 0.23% in V8 and 0.96% in Kraken, respectively.
This ratio lets us conclude that, in those three benchmark suites, doubles account for
only a small fragment of created values and therefore do not influence the overall
performance impact.

6.2. Correctness
To validate that our modifications for tracking the flow of information throughout ex-
ecution of a JavaScript program do not introduce any errors, we made sure that none
of our modifications broke any of the Mozilla regression tests in the WebKit reposi-
tory. This suite consists of over 1,000 test cases covering core JavaScript functionality,
including arrays, dates, functions, numbers, objects, regular expressions, and strings.

In addition, we wrote a suite of test cases that check the correct label propagation for
the information flow tracking logic and added them to the regression suite. These tests
exercise label propagation for all of the implemented binary operations and control-
flow structures: if-statements, the various loop constructs including break and con-
tinue statements, eval, and function calls. Within these tests we make use of a first-
class labeling framework [Hennigan et al. 2013] that permits explicit application and
inspection of labels within the JavaScript language itself, allowing our tests to be in-
corporated into the regression suite.

1 var a = (new FlowLabel (" labelA "))(24);
2 var b = (new FlowLabel (" labelB "))(12);
3
4 var res = a + b;
5
6 reportCompare (36, res , "add value incorrect .");
7 reportCompare(true , (labelof res). subsumes(labelof a), "wrong first label in add ");
8 reportCompare(true , (labelof res). subsumes(labelof b), "wrong second label in add ");
9

10 reportCompare ((labelof res), (labelof a).join(labelof b), "wrong joined label in add ");

Listing 6: Regression test verifying correct label propagation for additions.

Listing 6 shows one of the crafted regression tests for confirming correct label prop-
agation. In keeping with the other examples in this paper, this test focuses on the
correct label propagation for integer addition.

The integer addition test begins by giving each of the input operands separate labels.
Line 1 assigns input variable a the value 24 with label labelA (internally mapped to
0001) and line 2 assigns input variable b the value 12 with label labelB (internally
mapped to 0010).

After initialization, the test performs the addition on line 4. To provide feedback
during development, we use the reportCompare function, provided by the regression
suite. On line 6, the test checks that the resulting value is 36 as expected.

Further sanity checking occurs on lines 7 and 8 to ensure that the label attached to
the result subsumes the label attached to each of the inputs. Finally, on line 10, the
test verifies that the label attached to the result of the addition (0011) matches the join
of the labels on the operands (0001|0010).

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 C. Kerschbaumer et al.

6.3. Real World Applicability
Conforming to the capabilities of the attacker (Section 2), we define an information flow
violation as the inequality of domains between a network data payload and the target.
When the label of the payload indicates that the data has been influenced by any origin
other than the destination domain, the network request represents a communication
to a foreign party, possibly an attacker-controlled server.

To verify that our approach detects information flow violations, we implemented
a web crawler that automatically visits web pages and stays on each web page for
60 seconds. We randomly sample 100 of the Alexa Top one million [Alexa 2013] web
pages for the web crawler to visit. To simulate user interaction, the web crawler fills
out HTML-forms and submits the first available form on each visited page. For all
of the following results, we ran the crawler using information flow in both the JIT
compiler and the interpreter.

Ranked by Number of Included Domains Ranked by Number of Flow violations
Alexa Rank Page Dom. Alexa Rank Page Flows

1 556,895 prizyvnikmoy.ru 13 683,716 onefeat.com 295
2 540,606 finn-dinghy.de 13 592,642 train-shop.net 80
3 438,078 mitula.ch 13 196,697 nudepornstarz.net 78
4 19,658 roxio.com 13 394,557 just-eat.no 51
5 999,112 printertransferroller.blogspot.com 12 889,993 sfee.gr 49
6 799,519 masteringonlinemarketing.com 12 801,235 aksgonline.com 37
7 683,716 onefeat.com 12 556,895 prizyvnikmoy.ru 35
8 507,796 ifm-bonn.org 12 992,317 mentoring-uk.org.uk 30
9 494,397 natives.co.uk 12 540,774 buildinglebow.com 27

10 472,505 wcode.ru 12 834,020 tct.net.ua 24
Average (of all 100 pages) 7 Average (of all 100 pages) 12

Table IV: Web pages including content from the greatest number of different domains
(left) and web pages having the greatest number information flow violations (right).

Including other domains: Modern web applications integrate content from sev-
eral different origins on the web. Our statistics show that each of the visited web pages
include an average of 7 different origins for their content. Our approach lets us di-
rectly encode up to 16 different domains within one label which allows us to efficiently
encode labels even for the web pages including the most content: prizyvnikmoy.ru,
finn-dinghy.de, mitula.ch, and roxio.com including content from 13 domains. Our
findings complement the results of Nikiforakis et al [Nikiforakis et al. 2012], who vis-
ited over three million pages for their empirical study showing that more than 90% of
all pages include code from less than 15 different domains.

Information flow violations: Our crawler first visited the sample of pages using
the interpreter and found 1,155 information flow violations. The page onefeat.com
had the highest observed number of violating flows, at 295. On average, the crawler
detected 12 violating flows per page in our sample (cf. Table IV).

The crawler revisited the same pages the following day using the JIT compiler and
found 1,173 violations. Because the unit test cases used to develop both the interpreter
and JIT compiler implementations attest to the same flow tracking and detection abil-
ities, we attribute the 1.5% variance between runs to dynamic page content. For ex-
ample, the page newsarama.com increased the number of content requests from 11 to
18 between the two runs, where our network monitor recorded 16 violating informa-
tion flows in the interpreter and 28 information flow violations in the JIT. Groef et al.
[2012] report a similar phenomenon when evaluating their system on real web pages.

For our evaluation we do not distinguish between malicious flows and detected flow
violations due to the presence of Content Distribution Networks (CDNs), which mod-
ern web pages use for performance reasons to serve content to their users. Before our

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

Information Flow Tracking meets Just-In-Time Compilation A:19

approach can be adopted, web site authors need a way to express allowed information
flows and whitelist requests to their own CDN (cf. Section 6.4).

6.4. Path to Adoption by an Industrial JIT Compiler
Currently, JavaScript VMs do not support any kind of information flow tracking to
provide security against information theft attacks. Previous research (cf. Table III)
integrates the tracking logic in the JavaScript interpreter, degrading a user’s browsing
experience. Until now, users desiring this kind of security had to forgo the performance
provided by a JIT compiler and execute web applications using an interpreter slowed
down by information flow tracking overhead.

JIT compiling the tracking logic allows browsers to execute web applications faster
than even an unmodified JavaScript interpreter. By implementing the logic within
the JIT compiler, our system provides the same level of protection as other dynamic
information flow tracking systems, but with substantially improved performance.

Adopting the Approach: The information flow tracking approach in general still
has some remaining challenges. First, conservative labeling leads to a phenomenon
known as label creep [Sabelfeld and Myers 2003], where labels attached to runtime
values (especially those with long lifetimes) steadily rise through the lattice, until most
values become labeled with the top element. As the application executes, increasingly
more values carry ever higher labels resulting in false positives. We make no attempt
to solve this problem and can only suggest research on removing the conservative
assumptions through more powerful code analysis.

Second, in the context of JavaScript and the Web, we do not have strong guidelines
for what policies to enforce. We expect that most web users will find it too difficult to
write their own policies to protect their data. Shipping the browser with a built-in de-
fault policy might not be feasible either because web applications vary extensively in
both purpose and architecture. Reports on information leakage [Jang et al. 2010; Niki-
forakis et al. 2012; Kerschbaumer et al. 2013] suggest that, at this time, most user data
is used for web site analytics and marketing. Our tracking engine can be customized
to enforce any policy, so we leave questions of policy creation to other researchers, and
present here an evaluation that simply counts occurrences of cross-domain network
communication.

Finally, as can be seen in the summary in Table III, many information flow systems
incur substantial overhead. Our system specifically targets this issue by implementing
the dynamic tracking logic in a JIT compiler. Although the percentual slowdown is still
similar to other systems, we start from a much faster baseline. By establishing a new
status quo for the implementation of information flow, we hope that more users will be
willing to adopt these systems.

Adopting the Implementation: The dynamic information flow tracking VM de-
sign presented in Section 4 does not implement implicit indirect flow tracking (Sec-
tion 3.3). Tracking this type of flow requires propagation of control-flow influences
through values in non-executed paths and remains an open research question for dy-
namic languages such as JavaScript.

Our prototype does not cover complete exception handling, and also can not com-
pletely handle property lookups. We do not have the engineering power and think
that implementing and covering all these features to handle information flow tracking
would require expertise from a JS vendor and a dedicated team of engineers.

The repurposing of bits within JSValues limits our framework to tracking at most 16
different security principals within a label. We can address this problem in two ways:

• Extend every JSValue from 64 to 128 bits, incurring more memory overhead and
performance (cf. Table III), but also allows more precise tracking of doubles.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 C. Kerschbaumer et al.

• Reserve one or more bits as a flag to reference a larger label space, requiring a more
complex label framework, but offering support for more security principals and a
larger lattice (cf. Kerschbaumer et al. [2013]).

We have previous experience implementing both of the these techniques and hold the
opinion that the current encoding (Section 4.2) is not a fundamental limitation.

We design the pc-stack manipulation instructions (Section 4.5) to support all the
different control structures (switch-case, specialized iteration, exceptions, with state-
ment) but did not implement the required instrumentation for any structures beyond
the basic for loop in Listing 3. Supporting native data structures (array, string, date,
regex, etc.) and property lookup paths (by name, by value, user-overloadable getter-
s/setters, etc.) is required in an industrial strength implementation. Our prototype
covers the basic for loop together with mathematical operations, demonstrates that we
have an implementation approach with enough shared features between JIT compiled
code and the interpreter that it can even support JITing only after the interpreter
determines hot code fragments.

We also do not expect an on-the-fly translation between interpreter and JIT-compiled
code to be a problem, as long as the trampoline mechanism updates the supporting
data structures (label lattice and pc-stack) appropriately. Indeed, the introduction of
the pc-stack maintenance instructions makes this process easier.

7. RELATED WORK
The amount of research on preventing cross-site scripting underscores its importance.
In this section, we show how our work relates to the increasingly popular field of in-
formation flow security.

Fundamental Information Flow Tracking Systems: Denning and Denning
[1977] laid the foundation for subsequent efforts in their seminal work on informa-
tion flow control. The later survey paper by Sabelfeld and Myers [2003] summarizes
research on language-based information flow up until 2003. Most of those efforts fo-
cused on static analysis for information flow control in strongly typed languages. For
example, Java Information Flow (JIF) [Myers et al. 2001] implements a language-level
decentralized label model.

Information Flow Tracking for JavaScript: Unlike statically typed languages
such as Java, JavaScript code benefits from dynamic analysis during program execu-
tion. JavaScript allows and frequently uses the eval function (cf. Nikiforakis et al.
[2012]) which converts strings into code. As a result, static analysis techniques can
never analyze all code before execution. Unfortunately, dynamic program analysis has
drawbacks, too. Unlike static analysis, it both adds to the execution time and restricts
analysis to properties of code paths that are actually executed. The latter prevents a
single execution of a dynamic analysis from determining implicit indirect flows.

Vogt et al. [2007] pioneered a combination of dynamic data tainting analysis with
static analysis inside the Firefox browser. Dhawan and Ganapathy [2009] extended the
approach to detect violating flows in browser extensions written in JavaScript. Chugh
et al. [2009] separate programs into statically analyzable components and parts that
must be dynamically analyzed at runtime. Since the static analysis takes considerable
time, it is done at the server side. This has the drawback of requiring cooperation from
website operators besides the cost of widespread deployment. Just et al. [2011] improve
on Vogt and Dhawan’s approaches by improving the analysis of implicit indirect flows
to include control dependences created by unstructured control flow.

Several other works on information flow control in JavaScript, such as that by Hedin
and Sabelfeld [2012] and Austin and Flanagan [2009; 2010; 2012], influenced the de-
sign and implementation of our system. Finally, Kerschbaumer et al. [2013] take inspi-

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

Information Flow Tracking meets Just-In-Time Compilation A:21

ration from this research and combine previous approaches into a comprehensive so-
lution that tracks scripting-exposed subsystems in WebKit, including JavaScript VM,
the DOM, and user generated events.

We think that the above mentioned approaches can immediately benefit from in-
creased performance via our contribution: information flow tracking for JIT compilers.

Taint Tracking, Secure Multi-Execution, and Isolation: Taint tracking ap-
proximates information flow security and is limited to explicit flows. The omission of
implicit flows has two advantages: first, the taint tracking overhead is lower since it
performs less tracking. Enck et al. [2010], for example, report an average overhead
of 14% with their taint tracking solution for Android. Second, full tracking of implicit
information flows requires static analysis [Denning and Denning 1977; Myers 1999] or
halting execution for some flows [Austin and Flanagan 2009; 2010].

Secure Multi-Execution (SME) is a dynamic execution technique that was devel-
oped independently by several researchers. SME prevents all explicit and implicit
flows from occurring without the need to handle implicit indirect flows specially, e.g.,
via static program analysis. Capizzi et al. [2008] multi-execute the entire browser.
Devriese and Piessens [2010] formalizes the technique and are able to prove strong
soundness and precision guarantees. Recently, Groef et al. [2012] presented FlowFox
a full-browser solution that lowers the execution overhead compared to Capizzi et al.
by limiting SME to the JavaScript engine. SME unfortunately suffers from high over-
heads in both time and space. FlowFox, for instance, roughly doubles performance on
Google’s V8 benchmarks. Austin and Flanagan [2012] use “faceted values” to optimize
SME. They also note that a webpage with n principals need up to 2n executions; Flow-
Fox was evaluated using two.

A number of researchers have evaluated isolation and sandboxing as a defense
against XSS and other browser attacks. Grier et al. [2008] built the OP browser which
combines formal methods with operating system design principles. It partitions the
browser into subsystems with simple interactions and uses information flow to ana-
lyze attacks. Nadji et al. [2009] combines randomization of web content with runtime
tracking to ensure that untrusted content, included in a page can not be syntactically
isolated from its surrounding content. The strength of this approach, called document
structure integrity, is its ability to prevent non-JavaScript based XSS attacks; rather
than isolating untrusted JavaScript code, some approaches increase JavaScript se-
curity by limiting its capabilities. AdSafe, Caja, and FaceBook JS exemplify this ap-
proach [Crockford 2009; Miller et al. 2008; Facebook 2011].

Just-In-Time Compilation: Our work leverages the existence of JIT compilers for
JavaScript code and is not specific to a particular JIT. Early work on JIT compila-
tion was done by Deutsch and Schiffman [1984] for the Smalltalk-80 system. We refer
the interested reader to a concise survey covering the state-of-the-art in JIT compila-
tion until 2003 [Aycock 2003]. Recent advances in JIT compilation for JavaScript were
made by Gal et al. [2009] and Hackett and Guo [2012].

8. CONCLUSIONS
Today, web users miss out on the increased protection afforded by information flow
tracking. All major browsers include a just-in-time compiler and vendors advertise
their performance compared to competitors. Under these circumstances, implementa-
tions of information flow tracking in the JavaScript interpreter are no longer suitable.

Our system directly addresses the performance overhead of information flow by im-
plementing the tracking logic in JIT-compiled code. We do not “just” transplant inter-
pretative tracking techniques to a JIT compiler. Rather, we start by carefully choosing
a label encoding that is highly efficient w.r.t. space and time. We then (i) optimize

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 C. Kerschbaumer et al.

the allocation of the pc-stack to track implicit flows, (ii) cache the top of the program
counter stack to optimize its accesses, and (iii) inline the code that maintains the pc-
stack to avoiding costly trampoline jumps. Without these optimizations, a good part of
the speedup from JIT compilation would have been lost.

Our prototype has an average tracking overhead of 73% relative to a baseline JIT
compiler on CPU-intensive benchmarks. On absolute terms, its performance measures
more than twice as fast as the fastest known JavaScript information flow tracking
interpreter. In practice, steps such as DNS lookup, parsing and rendering, and content
transmission also factor into the browser performance equation. Consequently, using
information flow tracking for realistic web browsing affects the user experience far
less than CPU-intensive benchmarks may suggest. As a result, we believe that such
an overhead is more than acceptable—especially since users benefit from substantially
increased security in return.

ACKNOWLEDGMENTS

This material is based upon work partially supported by the Defense Advanced Research Projects Agency
(DARPA) under contract No. D11PC20024, by the National Science Foundation (NSF) under grant No. CCF-
1117162, and by a gift from Google.

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the Defense Advanced Research Projects Agency (DARPA)
or its Contracting Agent, the U.S. Department of the Interior, National Business Center, Acquisition Services
Directorate, Sierra Vista Branch, the National Science Foundation, or any other agency of the U.S. Govern-
ment.

Thanks to Andrei Homescu for his insightful comments and help to optimize the generated x86 assembly.

REFERENCES
2009. Proceedings of the ACM SIGPLAN Conference on Programming Language Design and Implementation,

Dublin, Ireland, June 15-21 (PLDI ’09). ACM.
2012. Proceedings of the 19th ACM Conference on Computer and Communications Security, Raleigh, NC,

USA, October 16-18 (CCS ’12). ACM.
2013. Proceedings of the 6th International Conference on Trust and Trustworthy Computing, London, UK,

June 17-19 (TRUST ’13). Springer.
Alexa. 2013. Alexa Global Top Sites. http://www.alexa.com/topsites. (2013). (checked: April, 2013).
Thomas H. Austin and Cormac Flanagan. 2009. Efficient purely-dynamic information flow analysis. In Pro-

ceedings of the 4th ACM SIGPLAN Workshop on Programming Languages and Analysis for Security,
Dublin, Ireland, June 15-21 (PLAS ’09). ACM, 113–124.

Thomas H. Austin and Cormac Flanagan. 2010. Permissive dynamic information flow analysis. In Proceed-
ings of the 5th ACM SIGPLAN Workshop on Programming Languages and Analysis for Security, Toronto,
Canada, June 10 (PLAS ’10). ACM, 1–12.

Thomas H. Austin and Cormac Flanagan. 2012. Multiple facets for dynamic information flow.
In Proceedings of the 39th ACM SIGPLAN-SIGACT Symposium on Principals of Pro-
gramming Languages, Philadelphia, PA, USA, January 25-27 (POPL ’12). ACM, 165–178.
DOI:http://dx.doi.org/10.1145/2103656.2103677

John Aycock. 2003. A brief history of just-in-time. Comput. Surveys 35, 2 (2003), 97–113.
DOI:http://dx.doi.org/10.1145/857076.857077

Roberto Capizzi, Antonio Longo, V. N. Venkatakrishnan, and A. Prasad Sistla. 2008. Preventing Information
Leaks through Shadow Executions. In Proceedings of the 24th Annual Computer Security Applications
Conference, Anaheim, CA, USA, December 8-12 (ACSAC ’08). IEEE, 322–331.

Deepak Chandra and Michael Franz. 2007. Fine-Grained Information Flow Analysis and Enforce-
ment in a Java Virtual Machine. In Proceedings of the 23rd Annual Computer Security Ap-
plications Conference, Miami Beach, FL, USA, December 10-14 (ACSAC ’07). IEEE, 463–475.
DOI:http://dx.doi.org/10.1109/ACSAC.2007.37

Ravi Chugh, Jeffrey A. Meister, Ranjit Jhala, and Sorin Lerner. 2009. Staged Information Flow for
JavaScript, See pld [2009], 50–62. DOI:http://dx.doi.org/10.1145/1542476.1542483

Douglas Crockford. 2009. AdSafe. http://www.adsafe.org. (2009). (checked: February, 2013).

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

Information Flow Tracking meets Just-In-Time Compilation A:23

Dorothy E. Denning and Peter J. Denning. 1977. Certification of Programs for Secure Information Flow.
Communications of the ACM 20, 7 (July 1977), 504–513. DOI:http://dx.doi.org/10.1145/359636.359712

L. Peter Deutsch and Allan M. Schiffman. 1984. Efficient implementation of the Smalltalk-80 System. In
Proceedings of the 11th ACM SIGPLAN-SIGACT Symposium on Principals of Programming Languages,
Salt Lake City, UT, USA, January (POPL ’84). ACM, 297–302.

Dominique Devriese and Frank Piessens. 2010. Noninterference through Secure Multi-execution. In Pro-
ceedings of the 31st IEEE Symposium on Security and Privacy, Oakland, CA, USA, May 22-25 (SP ’10).
IEEE, 109–124.

Mohan Dhawan and Vinod Ganapathy. 2009. Analyzing Information Flow in JavaScript-Based Browser
Extensions. In Proceedings of the 25rd Annual Computer Security Applications Conference, Honolulu,
HI, USA, December 7-11 (ACSAC ’09). IEEE, 382–391. DOI:http://dx.doi.org/10.1109/ACSAC.2009.43

ECMA International. 2009. Standard ECMA-262. The ECMAScript Language Specification. http://www.
ecma-international.org/publications/standards/Ecma-262.htm. (2009). (checked: April, 2013).

William Enck, Peter Gilbert, Byung-Gon Chun, Landon P. Cox, Jaeyeon Jung, Patrick McDaniel, and An-
mol N. Sheth. 2010. TaintDroid: An Information-Flow Tracking System for Realtime Privacy Monitoring
on Smartphones. In Proceedings of the 9th USENIX Symposium on Operating Systems Design and Im-
plementation, Vancouver, BC, October 4-6 (OSDI ’10). USENIX Association, 393–407.

Facebook. 2011. FBJS (Facebook JavaScript). http://developers.facebook.com/docs/fbjs/. (2011). (checked:
February, 2013).

Andreas Gal, Brendan Eich, Mike Shaver, David Anderson, David Mandelin, Mohammad R.
Haghighat, Blake Kaplan, Graydon Hoare, Boris Zbarsky, Jason Orendorff, Jesse Ruderman,
Edwin W. Smith, Rick Reitmaier, Michael Bebenita, Mason Chang, and Michael Franz. 2009.
Trace-based just-in-time type specialization for dynamic languages, See pld [2009], 465–478.
DOI:http://dx.doi.org/10.1145/1542476.1542528

Google. 2012. V8 Benchmark Suite. https://developers.google.com/v8/benchmarks. (2012). (checked: April,
2013).

Chris Grier, Shuo Tang, and Samuel T. King. 2008. Secure Web Browsing with the OP Web Browser. In
IEEE Symposium on Security and Privacy. IEEE Computer Society, 402–416.

Willem De Groef, Dominique Devriese, Nick Nikiforakis, and Frank Piessens. 2012. FlowFox: A
Web Browser with Flexible and Precise Information Flow Control, See ccs [2012], 748–759.
DOI:http://dx.doi.org/10.1145/2382196.2382275

Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. 2010. The Essence of JavaScript. In Proceed-
ings of the 24th European Conference on Object-Oriented Programming, Maribor, Slovenia, June 21-25
(ECOOP ’10). ACM, 126–150.

Brian Hackett and Shu Guo. 2012. Fast and precise hybrid type inference for JavaScript. In Proceedings of
the ACM SIGPLAN Conference on Programming Language Design and Implementation, Beijing, China,
June 11-16, (PLDI ’12). ACM, 239–250.

Daniel Hedin and Andrei Sabelfeld. 2012. Information-Flow Security for a Core of JavaScript. In Proceedings
of the IEEE Computer Security Foundations Symposium. IEEE, 3–18.

Eric Hennigan, Christoph Kerschbaumer, Per Larsen, Stefan Brunthaler, and Michael Franz. 2013. First-
Class Labels: Using Information Flow to Debug Security Holes, See tru [2013].

IEEE. 2008. IEEE Standard for Floating-Point Arithmetic. IEEE Std 754–2008 (August 2008), 1–58.
Dongseok Jang, Ranjit Jhala, Sorin Lerner, and Hovav Shacham. 2010. An Empirical Study of Privacy-

Violating Information Flows in JavaScript Web Applications. In Proceedings of the ACM Conference on
Computer and Communications Security. ACM, 270–283.

Seth Just, Alan Cleary, Brandon Shirley, and Christian Hammer. 2011. Information flow analysis for
JavaScript. In Proceedings of the 1st ACM SIGPLAN International Workshop on Programming Lan-
guage and Systems Technologies for Internet Clients, Portland, OR, USA, October 22-27 (PLASTIC ’11).
ACM, 9–18. DOI:http://dx.doi.org/10.1145/2093328.2093331

Christoph Kerschbaumer, Eric Hennigan, Per Larsen, Stefan Brunthaler, and Michael Franz. 2013. Towards
Precise and Efficient Information Flow Control in Web Browsers, See tru [2013].

Lap Chung Lam and Tzi-cker Chiueh. 2006. A General Dynamic Information Flow Tracking Frame-
work for Security Applications. In Proceedings of the 22rd Annual Computer Security Ap-
plications Conference, Miami Beach, FL, USA, December 11-15 (ACSAC ’06). IEEE, 463–472.
DOI:http://dx.doi.org/10.1109/ACSAC.2006.6

Microsoft. 2012. Microsoft Security Intelligence Report, Volume 13: January - June 2012. http://www.
microsoft.com/security/sir/default.aspx. (2012). (checked: April, 2013).

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24 C. Kerschbaumer et al.

Mark S. Miller, Mike Samuel, Ben Laurie, Ihab Awad, and Mike Stay. 2008. Caja: Safe active content in
sanitized JavaScript. http://google-caja.googlecode.com/files/caja-spec-2008-01-15.pdf. (2008). (checked:
February, 2013).

Mozilla. 2011. Kraken JavaScript Benchmark. http://krakenbenchmark.mozilla.org/. (2011). (checked:
February, 2013).

Mozilla Foundation. 2008. Same Origin Policy for JavaScript. https://developer.mozilla.org/En/Same origin
policy for JavaScript. (2008). (checked: April, 2013).

Andrew C. Myers. 1999. JFlow: Practical Mostly-Static Information Flow Control. In Proceedings of the 26th
ACM SIGPLAN-SIGACT Symposium on Principals of Programming Languages, San Antonio, TX, USA,
January 20-22 (POPL ’99). ACM, 228–241.

Andrew C. Myers and Barbara Liskov. 2000. Protecting privacy using the decentralized label model. Trans-
actions on Software Engineering and Methodology (TOSEM ’00) 9, 4 (October 2000), 410–442.

Andrew C. Myers, Lantian Zheng, Steve Zdancewic, Stephen Chong, and Nathaniel Nystrom. 2001. Jif: Java
information flow. http://www.cs.cornell.edu/jif. (2001). (checked: April, 2013).

Yacin Nadji, Prateek Saxena, and Dawn Song. 2009. Document Structure Integrity: A Robust Basis for
Cross-site Scripting Defense. In Proceedings of the 16th Annual Network and Distributed System Secu-
rity Symposium, San Diego, CA, USA, Februray 8-11 (NDSS ’09). The Internet Society.

Susanta Nanda, Lap-Chung Lam, and Tzi-cker Chiueh. 2007. Dynamic Multi-Process Information Flow
Tracking for Web Application Security. In Proceedings of the ACM/IFIP/USENIX International Confer-
ence on Middleware Companion, Newport Beach, CA, USA, November 26-30 (MC ’07). ACM, 19:1–19:20.

Eduardo Vela Nava and David Lindsay. 2009. Our Favorite XSS Filters and How to Attack Them.
BlackHat Conference, Presentation http://www.blackhat.com/presentations/bh-usa-09/VELANAVA/
BHUSA09-VelaNava-FavoriteXSS-SLIDES.pdf. (2009). (checked: April, 2013).

Nick Nikiforakis, Luca Invernizzi, Alexandros Kapravelos, Steven Van Acker, Wouter Joosen, Christopher
Kruegel, Frank Piessens, and Giovanni Vigna. 2012. You Are What You Include: Large-scale Evaluation
of Remote JavaScript Inclusions, See ccs [2012], 736–747.

OWASP. 2012. The Open Web Application Security Project. https://www.owasp.org/. (2012). (checked: April,
2013).

OWASP. 2013. XSS Filter Evasion Cheat Sheet. https://www.owasp.org/index.php/XSS Filter Evasion
Cheat Sheet. (2013). (checked: August, 2013).

Andrei Sabelfeld and Andrew C. Myers. 2003. Language-Based Information-Flow Security. Vol. 21. 5–19.
SunSpider. 2012. SunSpider JavaScript Benchmark. http://www2.webkit.org/perf/sunspider-0.9/sunspider.

html. (2012). (checked: April, 2013).
The MITRE Corporation. 2012. Common Weakness Enumeration: A Community-Developed Dictionary of

Software Weakness Types. http://cwe.mitre.org/top25/. (2012). (checked: April, 2013).
Minh Tran, Xinshu Dong, Zhenkai Liang, and Xuxian Jiang. 2012. Tracking the Trackers: Fast and Scal-

able Dynamic Analysis of Web Content for Privacy Violations. In Proceedings of the 10th International
Conference on Applied Cryptography and Network Security, Singapore, June 26-29, (ACNS ’12). Lecture
Notes in Computer Science, Vol. 7341. Springer, 418–435.

Philipp Vogt, Florian Nentwich, Nenad Jovanovic, Christopher Kruegel, Engin Kirda, and Giovanni Vigna.
2007. Cross Site Scripting Prevention with Dynamic Data Tainting and Static Analysis. In Proceedings
of the 14th Annual Network and Distributed System Security Symposium, San Diego, CA, USA, February
28-March 2 (NDSS ’07). The Internet Society. DOI:http://dx.doi.org/10.1.1.117.6526

Heng Yin, Dawn Song, Manuel Egele, Christopher Kruegel, and Engin Kirda. 2007. Panorama: capturing
system-wide information flow for malware detection and analysis. In Proceedings of the 14th ACM Con-
ference on Computer and Communications Security, Alexandria, VA, USA, October 28-31 (CCS ’07).
ACM, 116–127.

Stephan A. Zdancewic. 2002. Programming Languages for Information Security. Ph.D. Dissertation.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

Information Flow Tracking meets Just-In-Time Compilation A:25

A. DETAILED BENCHMARK RESULTS

Benchmark Base-JIT % Base-Int % Flow-Int % Flow-JIT %

Kraken-Total 8883.4 (0.0) 36099.4 (306.37) 101244.3 (1039.7) 12266.7 (38.09)
astar 1567.7 (0.0) 2499.4 (59.43) 6893.4 (339.71) 2484.4 (58.47)
beat-detection 648.0 (0.0) 2091.1 (222.7) 4970.4 (667.04) 793.3 (22.42)
dft 652.5 (0.0) 1708.9 (161.9) 4357.2 (567.77) 807.8 (23.8)
fft 482.3 (0.0) 2035.8 (322.1) 4870.5 (909.85) 542.3 (12.44)
oscillator 427.1 (0.0) 1177.4 (175.67) 3650.1 (754.62) 561.4 (31.44)
gaussian-blur 2441.3 (0.0) 16186.3 (563.02) 51855.2 (2024.08) 3298.5 (35.11)
darkroom 701.7 (0.0) 2398.1 (241.76) 6309.1 (799.12) 1116.2 (59.07)
desaturate 691.8 (0.0) 4249.0 (514.19) 9205.9 (1230.72) 785.1 (13.49)
parse-financial 85.1 (0.0) 83.5 (-1.88) 89.4 (5.05) 84.8 (-0.35)
stringify-tinderbox 102.0 (0.0) 107.7 (5.59) 108.9 (6.76) 104.9 (2.84)
crypto-aes 215.6 (0.0) 723.6 (235.62) 1923.0 (791.93) 322.6 (49.63)
crypto-ccm 168.8 (0.0) 544.9 (222.81) 1322.1 (683.23) 235.6 (39.57)
crypto-pbkdf2 533.1 (0.0) 1746.4 (227.59) 4287.2 (704.2) 869.3 (63.07)
crypto-sha256-iterative 166.4 (0.0) 547.3 (228.91) 1401.9 (742.49) 260.5 (56.55)

SunSpider-Total 233.7 (0.0) 815.0 (248.74) 1936.2 (728.5) 406.6 (73.98)
cube 12.6 (0.0) 28.1 (123.02) 73.4 (482.54) 18.3 (45.24)
morph 10.0 (0.0) 31.1 (211.0) 114.0 (1040.0) 13.1 (31.0)
raytrace 11.3 (0.0) 34.1 (201.77) 70.4 (523.01) 17.0 (50.44)
binary-trees 3.1 (0.0) 10.0 (222.58) 32.1 (935.48) 8.0 (158.06)
fannkuch 14.1 (0.0) 68.1 (382.98) 195.0 (1282.98) 44.6 (216.31)
nbody 8.0 (0.0) 29.8 (272.5) 64.0 (700.0) 11.0 (37.5)
nsieve 4.0 (0.0) 14.3 (257.5) 50.1 (1152.5) 10.0 (150.0)
3bit-bits-in-byte 2.4 (0.0) 22.0 (816.67) 68.8 (2766.67) 8.3 (245.83)
bits-in-byte 6.0 (0.0) 22.3 (271.67) 95.7 (1495.0) 21.1 (251.67)
bitwise-and 4.0 (0.0) 24.1 (502.5) 77.8 (1845.0) 10.0 (150.0)
nsieve-bits 6.0 (0.0) 32.0 (433.33) 108.3 (1705.0) 13.2 (120.0)
recursive 2.8 (0.0) 12.2 (335.71) 61.8 (2107.14) 12.5 (346.43)
aes 9.0 (0.0) 25.3 (181.11) 67.1 (645.56) 18.9 (110.0)
md5 3.0 (0.0) 16.0 (433.33) 51.7 (1623.33) 7.1 (136.67)
sha1 2.0 (0.0) 15.0 (650.0) 50.1 (2405.0) 7.0 (250.0)
format-tofte 15.1 (0.0) 20.9 (38.41) 48.9 (223.84) 22.9 (51.66)
format-xparb 11.0 (0.0) 16.1 (46.36) 39.9 (262.73) 16.0 (45.45)
cordic 8.0 (0.0) 33.6 (320.0) 105.5 (1218.75) 20.7 (158.75)
partial-sums 13.0 (0.0) 37.9 (191.54) 74.5 (473.08) 13.4 (3.08)
spectral-norm 5.0 (0.0) 21.0 (320.0) 61.4 (1128.0) 10.0 (100.0)
dna 15.0 (0.0) 158.5 (956.67) 161.6 (977.33) 15.0 (0.0)
base64 8.0 (0.0) 20.4 (155.0) 58.3 (628.75) 10.2 (27.5)
fasta 9.1 (0.0) 22.7 (149.45) 53.9 (492.31) 16.1 (76.92)
tagcloud 16.0 (0.0) 33.3 (108.12) 47.1 (194.38) 19.0 (18.75)
unpack-code 26.1 (0.0) 47.7 (82.76) 59.2 (126.82) 31.1 (19.16)
validate-input 9.1 (0.0) 18.5 (103.3) 45.6 (401.1) 12.1 (32.97)

V8-Total 1644.4 (0.0) 6706.4 (307.83) 15754.7 (858.08) 3426.7 (108.39)
crypto 239.9 (0.0) 1856.2 (673.74) 4716.4 (1865.99) 482.9 (101.29)
deltablue 378.7 (0.0) 1326.8 (250.36) 3362.9 (788.01) 932.1 (146.13)
earley-boyer 171.6 (0.0) 427.6 (149.18) 1216.5 (608.92) 336.5 (96.1)
raytrace 105.0 (0.0) 249.8 (137.9) 531.8 (406.48) 181.5 (72.86)
regexp 201.0 (0.0) 903.3 (349.4) 916.1 (355.77) 197.7 (-1.64)
richards 309.3 (0.0) 1637.6 (429.45) 4415.4 (1327.55) 1015.4 (228.29)
splay 238.9 (0.0) 305.1 (27.71) 595.6 (149.31) 280.6 (17.46)

Table V: Detailed performance numbers for Kraken, Sunspider, and V8 benchmarks
normalized by the JavaScriptCore JIT compiler.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

