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Abstract—Web browsers display content in the form of
HTML, CSS and JavaScript retrieved from the world wide
web. The loaded content is subject to the web security model
and considered untrusted and potentially malicious. To com-
plicate security matters, Firefox uses the same technologies
to render its user interface as it does to render untrusted
web content which blurs the distinction between the two
privilege levels.

Getting interactions between the two correct turns out
to be complicated and has led to numerous real-world
security vulnerabilities. We study those vulnerabilities to
discover common threats and explain how we address them
systematically to harden Firefox.

Index Terms—Web Security, Browser Security, Universal
Cross-site Scripting, Hardening

1. Motivation

Historically, web browsers have made a fairly sharp
distinction between web content code and browser ap-
plication code. Content code is part of the web page
and hence subject to the web security model [31]–[34],
[38], meaning that it is considered malicious and hence
unprivileged and sandboxed. Browser code on the other
hand represents the actual application code for the browser
window and user interface.

While the majority of a browser’s core is written in
low-level languages such as C++, the front-end code in
Firefox is written using standard web technologies such
as HTML and JavaScript. This JavaScript code, commonly
referred to as chrome code, runs with system privileges.
Using internet technologies to write the browser user
interface has a multitude of advantages such as rapid
prototyping and quicker development cycles. Plus it has
benefits for modularity, cross-platform development, and
encourages a wider range of people to contribute.

Unfortunately, JavaScript in its dynamic and malleable
nature contains a variety of insecure artifacts which pro-
vide the functionality to convert arbitrary strings to code
at runtime. Including and relying on such insecure arti-
facts within privileged chrome code opens up an attack
vector that potentially allows untrusted content code to
trick chrome code into executing untrusted code in the
privileged execution scope. And if chrome-privileged code
is compromised, an attacker can take over the user’s
computer.

Over the course of a decade the distinction between
untrusted content code and privileged chrome code has

become blurry. We attribute this challenging lack of dis-
tinction to the fact that web browsers are constantly im-
proving the user experience. Hence, it is not surprising
that subtle bugs appear given the complexity of a browser
codebase which consists of millions of lines of code and
hundreds, if not thousands, of people working on it simul-
taneously. More precisely, mozilla-central1 the codebase
of Firefox, consists of over 272,000 files which contain
over 4,000,000 lines of C++ code, around 3,000,000 lines
of HTML and over 5,000,000 lines of JavaScript code. In
the year 2019, 1,386 unique developers committed a total
of 55,914 changesets to mozilla-central.

Expecting developers to write bug-free code on rapid
release cycles is unrealistic and one can imagine that
even the best code review process in combination with
advanced static and dynamic code analysis can not prevent
the introduction of bugs to a codebase as complicated
as a web browser. Subsequently, Firefox began to suffer
from privilege escalation bugs which allowed content
code to execute with system privileges (see for exam-
ple CVE-2017-7795, CVE-2017-7798, CVE-2017-7799,
CVE-2018-5124, and CVE-2019-11718 reported to the
Common Vulnerabilities and Exposures2 database).

To compensate, we present a layered security approach
which removes insecure artifacts at various levels in the
codebase which allows hardening the Firefox web browser
against all sorts of injection and privilege escalation at-
tacks. While the provided implementation details are spe-
cific to the Firefox web browser, the presented hardening
techniques apply to all applications which build on top of
HTML and/or JavaScript and execute untrusted content
alongside trusted.

We first provide background on the fundamental se-
curity architecture of the Firefox web browser (Section 2)
and contribute the following:

• We survey insecure code fragments which should
not be used by any application that executes un-
trusted code alongside trusted code and relies on
HTML and JavaScript for both (Section 3).

• We examine and provide technical insights for
the different hardening techniques we have incor-
porated into Firefox (v.75.0) to prevent privilege
escalation attacks (Section 4).

• We provide a practical assessment (Section 5) and
practical considerations (Section 6) when retroac-
tively hardening the codebase of Firefox.

1. Download of the Firefox code repository ‘mozilla-central’ [19] on
February 3rd, 2020.

2. https://cve.mitre.org



2. Background on the Security Architecture
of Firefox

Like any web browser, Firefox loads JavaScript from
untrusted and potentially hostile web pages, and runs it
on the user’s computer. The security architecture for sep-
arating web content and privileged content within Firefox
however not only relies on the same-origin policy [31], but
additionally builds upon the security boundaries provided
by process isolation.

2.1. Separating Privilege Based on Processes

In older versions of Firefox for desktop, predating
Firefox 48 from August 2016, the entire browser ran
within a single operating system process. Specifically, the
JavaScript that powered the user interface (chrome code)
and the JavaScript that ran within web pages (content
code) were not separated.

In 2016, Firefox was re-architected to run the user
interface and trusted operating system operations in a
separate process from web content. Due to the user inter-
face being implemented in web technologies, the parent
process still needs to be capable of rendering HTML with
CSS and JavaScript.

As of February 2020, Firefox uses one privileged
process to launch other processes and coordinate activities,
eight web content processes, up to two additional semi-
privileged web content processes, and four utility pro-
cesses for web extensions, GPU operations, networking,
and media decoding. Ultimately, Mozilla plans to support
considerably more web content processes targeting the
Site Isolation Architecture presented by Reis et al. [21].

The multi process architecture allows Firefox to sep-
arate more complicated or less trustworthy code into
processes that have reduced access to operating system
resources or user files - an execution model commonly
referred to as Sandboxing. As a consequence, less priv-
ileged code will need to ask more privileged code to
perform operations when it itself cannot. For example,
a content process will have to ask the parent process to
save a download because it does not have the permissions
to write to disk. Put differently, if an attacker manages
to compromise the content process it must additionally
(ab)use one of the APIs to convince the parent process to
act on its behalf.

2.2. Separating Privilege Based on Context

From a logical perspective, Firefox relies on the con-
cept of a Principal for representing the security context
of code and for performing security checks. A Principal
represents an origin (the scheme, host, and port) and
additional optional attributes [30]. To evaluate whether
two contexts are same-origin, Firefox compares the Princi-
pals of the two contexts. In general, Firefox distinguishes
between three types of Principals:

• System Principal: The System Principal passes all
security checks and reflects the security context of
all browser user interface (chrome) code.

• Content Principal: A Content Principal reflects
the security context of web content. For example,

when visiting the page https://foo.com then
the DOM (Document Object Model) [37] window
of that page has a content principal defined by the
origin of the window.

• Null Principal: The Null Principal fails
almost all security checks, is only same-
origin with itself. The Null Principal
uses a custom scheme and host, e.g.
moz-nullprincipal:{0bceda9f-...},
where the host is represented as a universally
unique identifier. The HTML standard names it a
unique opaque origin [39]. For example, iframe
elements with a sandbox attribute use a new
Null Principal as their security context.

2.3. Differentiation of Chrome and Content Code

The two privilege distinctions - a privileged parent
process and other lesser privileged child processes; and
the privileged System Principal Context and the lesser
privileged Content and Null Principal Contexts - both
describe mechanisms of privilege distinction within Fire-
fox. However, the actual mechanism by which privilege is
separated is generally unimportant unless noted otherwise.
Dating back to when Firefox had only a single process;
‘chrome’ code refers to the privileged code and related
privileged user interface elements such as the address bar
and ‘content’ code refers to the unprivileged code and is
generally associated with a webpage.
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Figure 1: Firefox Security Architecture showing the sepa-
ration of privileged chrome code and the Tabs A, B, and C
including DOM windows exhibiting unprivileged content
code.

As illustrated in Figure 1, the Browser Window rep-
resents the Firefox application window, including the URL
Bar, all other toolbars and menus, as well as as all tabs
that contain web pages. Underneath the Browser Window
the tabs Tab A, Tab B, and Tab C represent the tabs that a
user keeps open. Between any Tab and the corresponding
DOM Window is the boundary between privileged and
unprivileged code. Objects in the upper, privileged side
are part of Firefox itself and allowed complete access
to objects in a less privileged scope. They are granted
a restricted view of such objects, specifically designed to
prevent them from being tricked by the untrusted code
(see Section 4.4). Objects in the lower, unprivileged side
are loaded from the web as HTML, CSS and JavaScript.



3. Insecure Code Fragments liable for the
majority of Injection Attacks

Building desktop applications using HTML and
JavaScript and loading untrusted web content within such
applications can bear privilege separation problems. In
particular, because JavaScript supports the ability to take
dynamically built strings and execute them as code which
represents extremely valuable flaws for attackers to ex-
ploit. Enough so that even a small weakness, or one that
does appear exploitable, is worth significant effort on the
attacker’s part to investigate.

Inspecting, evaluating and grouping security vulner-
abilities recorded within Mozillas Bug Tracking System
reveals that the top attack vectors responsible for injection
attacks are the following three insecure code fragments.
Relying on any of these fragments within the trusted
code opens up an attack vector which potentially allows
untrusted code to trick chrome code to execute untrusted
code within the privileged scope.

3.1. DOM construction from arbitrary strings

Assignments to the property innerHTML,
outerHTML and also insertAdjacentHTML()
provide similar functionality on a DOM element, and
the same security semantics discussed within this section
hold true for all of them.

Description: The Element property innerHTML gets
or sets the HTML or XML markup contained within
the element. The innerHTML property of the document
grants access to the current HTML source of the page,
including any changes since the initial page load. Setting
the value of innerHTML on an element removes all of
the descendants within the element and replaces them
with nodes constructed by parsing the provided string as
HTML.

Security Risk: Even though browsers do not allow the
execution of code inserted through <script> elements
when assigning to innerHTML, there are numerous ways
to cause JavaScript to execute.

For example, the following simplified code snippet:

1 <img src="x" onerror="alert(’attack-code’)">

will cause a failing image load and allow the injected
code in the error event handler attribute to run. Again,
the supplied code executes in the security context of the
current runtime. For that reason, we recommend to abstain
from using the insecure fragment innerHTML.

Alternative: Fortunately, there are alternatives to
innerHTML which mitigate the security risks. For exam-
ple, the fragment Node.textContent does not parse
content from a string, but instead inserts it as raw text
and hence eliminates the risk of dynamically parsing and
executing JavaScript in the HTML markup.

3.2. JS execution of arbitrary strings

The JavaScript function eval() — along with
the similar new Function(), setTimeout() and

setInterval() — provides a powerful yet dangerous
tool.

Description: The function eval() represents a
global function which evaluates or executes a specified
string argument.

Security Risk: The function eval() and aforemen-
tioned relatives parse and execute an arbitrary string in the
same security context as itself. This feature conveniently
allows executing code generated at runtime or stored in
non-script locations like the DOM. Unfortunately the use
of eval() also opens up the code to injection attacks
which cause the injected code to be evaluated and ex-
ecuted in the security context of the current runtime. In
other words, if an attacker manages to provide code which
ends up within eval(), then the malicious code ends up
running on the user’s machine with the privileges of the
current security context.

Besides the security risk, we discourage the use of
eval() to dynamically generate code because the ar-
gument to eval() is not known a-priori and hence
the compiler can not fully optimize variable lookup in
the surrounding code which can result in a performance
downgrade.

Alternative: Developers have often used eval() for
legacy browser support in JSON parsing and keep it as
a fallback if the global JSON.parse() function is not
available. We recommend removing all of those fallbacks.
The global JSON object has been available since the stan-
dardization of ECMAScript 5 [28] and can be considered
widely supported.

3.3. Code execution from URIs

Description: The javascript: resource identifier
scheme encodes executable JavaScript code within con-
texts that support resource identifiers. When navigating to
the javascript: URL scheme, the browser does not
actually seek a remote resource but will instead execute
the supplied JavaScript code. If the code returns a string,
the browser will parse and render it as a dynamically
generated HTML document.

Security Risk: Navigations to javascript: URLs
have been made popular in the early days of active HTML
documents. If an attacker gains control over the code
within the javascript: URL, it allows the attacker to
execute arbitrary JavaScript code in the current context.

The section ‘security-considerations’ within the draft
of The ‘javascript’ resource identifier scheme [12] rec-
ommends extreme caution in deciding where resource
identifiers are recognized and permitted because of the
in-context evaluation. Instead of recommending extreme
caution of where to use the javascript: resource
identifier scheme we recommend to eliminate it entirely
from applications that rely on JavaScript for trusted and
untrusted code to avoid potential injection and privilege
escalation attacks.

Alternative: Instead of relying on javascript:
URIs we recommend using static JavaScript code that sets
pre-defined event handlers on HTML elements using the
addEventListener() method.



4. Hardening Firefox

One fundamental difference between writing browser
chrome code and web content code is that all the browser
code can be defined upfront and hence be packaged and
shipped with the browser itself. Restricting execution to
code originating from that static code repository allows us
to make a number of assumptions about browser chrome
code, each enabling us to apply more constraints than
we can apply to normal websites. In particular, browser
chrome code:

• should never need to convert arbitrary strings to
code, because we can define all the code directly in
our codebase. Recognizing this property allows us
to harden Firefox at two levels: (a) never execute
inline Javascript, including eval(), and (b) apply a
CSP to ensure injected JavaScript does not execute
(See Section 4.1 and Section 4.2).

• should never need to load remote content (unlike
real websites), because we can package all content
within the browser code (see Section 4.3).

• will almost never want to interact with content-
defined objects, and thus should ignore them by
default (Section 4.4).

4.1. Hardening internal pages

Firefox not only renders web pages on the internet
but also ships with a variety of built-in pages, commonly
referred to as about pages. An about page provides an
interface to reveal internal state of the browser.

Since such internal pages are also implemented using
HTML and JavaScript they are subject to the same security
model as regular web pages and therefore not immune
from code injection attacks.

More figuratively, if an attacker manages to inject
code into such an internal page, it potentially allows the
attacker to execute the injected script code in the security
context of the browser itself, hence allowing the attacker
to perform arbitrary actions on the behalf of the user.
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Figure 2: Firefox Security Architecture showing separa-
tion of privileged chrome code and the tab A, showing
a content privileged about page; tab B, showing a semi
privileged about page and tab C of a system privileged
about page.

4.1.1. The privilege levels of internal pages. As illus-
trated in Figure 2, the Firefox web browser relies on three
different privilege levels for building and exposing the
built-in pages:

Content Privileged page: A Content Privileged page
and a regular web page loaded over the internet share the
same security semantics. More precisely, there is abso-
lutely no difference from a security perspective whether
the page https://foo.com or the content privileged
about page about:credits, which displays a list of
contributors to Mozilla, loads within Firefox. In both
cases, a Content Principal defines the security context,
which completely separates the content code from the
system code.

Semi Privileged page: A Semi Privileged about page
relies on a Content Principal for defining its security
context. Additionally, the web browser grants special per-
missions to semi privileged about pages.

For example, the semi privileged page
about:privatebrowsing is allowed to open a
new window in Private Browsing Mode. To allow the
page to actually switch to that privacy enhancing mode,
Firefox exposes an API to semi privileged pages. This
reduced API permits the page to actually flip an internal
setting and allows the end user to open a new window
using Private Browsing Mode.

System Privileged page: A System Privileged page
needs full access to Firefox internals and hence exe-
cutes within the same security context as the browser
chrome code itself, defined by a System Principal. Most
prominently, about:config, which exposes an API to
inspect and update preferences and settings which allows
Firefox users to tailor their Firefox instance to their spe-
cific needs and desires.

For obvious reasons, system privileged pages expose
the highest value target for attackers, because being able to
inject code into a system privileged page instantly allows
an attacker to run code with system privileges. To mitigate
the risk of code injections and to add an additional layer
of security to all of the built-in pages, we not only applied
our hardening techniques to system privileged pages, but
extended our protections to all 45 internal pages.

4.1.2. Rewriting all occurrences of inline JavaScript.
Before adding a prevention mechanism that blocks the
execution of injected script, we have to rewrite all inline
event handlers because our proposed prevention mecha-
nism can not distinguish between regular inline script and
attacker injected inline script. For example, the following
button element code defines some function to execute
whenever the button is clicked:

1 <button id="myBut" onclick="myFunc(e)">clickme</button>

Can be reduced to the following HTML markup:

1 <button id="myBut">click me</button>

And the actual JavaScript code:

1 let myBut = document.getElementById("myBut");
2 myBut.addEventListener("click", (e) => { myFunc(e) });



The JavaScript code was moved into an external
file which we package and ship with the browser it-
self. For example, for our running example, we create
a file named buttonCode.js which we load relying
on the pseudo protocol chrome: which loads packaged
resources within Firefox. We then rely on the standard
loading mechanism of external script within the HTML
markup:

1 <script src="chrome://path/buttonCode.js"></script>

Moving all inline event handlers as well as all
JavaScript code within <script> tags into the newly
created external files allows us to remove all inline code
within all of the internal pages.

4.1.3. Preventing the execution of injected JavaScript.
The removal of all inline JavaScript allows us to apply a
strong Content Security Policy (CSP) [32] such as

1 default-src chrome:;

to all inernal pages. Please note that a CSP which does
not include the keyword ’unsafe-inline’ causes
the browser to block all inline JavaScript. Hence, our
applied CSP ensures that JavaScript code only executes
when loaded from a packaged resource using the in-
ternal chrome: protocol. Additionally, we added com-
mit guards to assure that newly introduced pages within
Firefox need to provide at least a CSP including a
default-src directive. Those safe guards ensure that
no new internal pages can be introduced to Firefox without
a proper defense mechanism.

Not allowing any inline script in any of the internal
pages limits the attack surface of arbitrary code execution
and hence provides a strong first line of defense against
code injection attacks.

4.2. Restricting calls to eval()-like Functions

1 bool CheckAllowEval(nsIPrincipal* aPrincpal,
2 JSContext* aCtx) {
3

4 // if not in chrome content -> ALLOW
5 if (!aPrincpal->IsSystemPrincipal(){
6 return true;
7 }
8

9 // See Section 5.2 for practical adjustments
10

11 // loading eval() in chrome content -> DENY
12 ASSERT(false, "error: eval() in chrome context");
13 return false;
14 }

Listing 1: Restricting eval() within privileged contexts.

As discussed within Section 3.2, the JavaScript func-
tion eval(), along with the eval() family of functions
expose a high impact attack surface. Hence, we remove
all usages of it in privileged code, and enforce that any
new calls to it will be ineffectual and not execute any
argument provided to the function.

The internal browser implementation of the Con-
tent Security Policy within Firefox already provides the
necessary security infrastructure for preventing the ex-
ecution of eval(). More precisely, in case the keyword
’unsafe-eval’ is not present in the CSP to enforce

then a browser’s CSP implementation will block the exe-
cution of eval. We add our additional security restrictions
on top of the already existing security infrastructure and
ensure that eval() can not appear in privileged contexts.

As illustrated within Listing 1 we implement a security
function CheckAllowEval() which asserts and returns
false if a call to eval() occurs in system privileged con-
texts. While not exemplified, we enforce a similar check
for any usage in the privileged parent process.

Before enforcing our new security monitoring system
for calls to eval() in system privileged contexts we rewrote
occurrences of eval() in privileged code in 54 distinct loca-
tions. In the majority of cases we could replace the call to
eval() with a call to JSON.parse(). We attribute these
legacy uses of eval() to the fact that JSON.parse() was
not available when those calls to eval were introduced in
the Firefox codebase. In most other situations, the offend-
ing code was a call such as setTimeout("done()")
that we replaced with e.g. setTimeout(function()
{ done(); }).

As illustrated on Line 5, if the call to eval() does not
happen in a privileged security context, reflected through
a System Principal, then the eval()-call happens in regular
web content. Since our eval restrictions do not apply to
web content, only to privileged contexts, our introduced
security function can return true at this point and allow
the call to eval().

As indicated at Line 9, we make some practical ad-
justments to our newly introduced CheckAllowEval
function. We refer the reader to Section 5.2 and 5.3 which
discusses those adjustments. At this point, we know the
call to eval() happens in a system privileged context and
our dynamic eval() monitor will raise an assertion (see
Line 12) and will return false and deny execution.

Removing all occurrences of eval() in system priv-
ileged contexts reduces the attack surface of arbitrary
code execution and hence provides an additional layer of
security against code injection attacks.

4.3. Restricting loads in privileged contexts

1 bool CheckAllowLoadInChromeCtxt(nsIChannel* aChannel) {
2

3 nsILoadInfo* loadInfo = aChannel->GetLoadInfo();
4

5 // if not in chrome content -> ALLOW
6 if (!loadinfo->LoadingPrincipal->IsSystemPrincipal(){
7 return true;
8 }
9

10 // if safe scheme -> ALLOW
11 nsIURI* uri = aChannel->GetURI();
12 if (uri->SchemeIs("chrome") ||
13 uri->SchemeIs("resource") ||
14 uri->SchemeIs("about") {
15 return true;
16 }
17

18 // See Section 5.3 for practical adjustments
19

20 // loading potentially dangerous code, e.g.
21 // remote content in the form of http(s)
22 // resources or javascript: URIs
23 // into chrome content -> DENY
24 ASSERT(false,
25 "error: loading insecure code in chrome context");
26 return false;
27 }

Listing 2: Restricting resource loads within system
privileged contexts.



Higher privileged contexts within Firefox have access
to APIs that are capable of modifying the browser settings
and its user interface. We ensure that these APIs are
restricted to HTML documents and scripts that are part
of the Firefox source code. More specifically, system
privileged code within Firefox should never need to load
remote web content, because all the user interface code is
packaged and shipped within the browser itself.

Firefox enforces a Security by Default [13] loading
mechanism for all resource loads. Building on top of these
efforts we add runtime assertions to ensure that Firefox
can only load resources into system privileged context
or the parent process if allow-listed by our introduced
runtime monitor.

As illustrated in Listing 2 we call this monitor
CheckAllowLoadInChromeCtxt() which returns
true if the load is allowed, or raises an assertion and
returns false if the monitor detects that the resource is
not allowed to be loaded into system privileged contexts.
While not exemplified, we enforce similar restrictions of
resource loads in the parent process.

As illustrated on Line 6, the nsILoadInfo
object holds information about the loading context
that caused the resource load to occur. If the
load is not going to happen within privileged
chrome context, as represented through the check
LoadingPrincipal->IsSystemPrincipal(),
then the result of the resource load will not be evaluated
in system privileged context and it is safe for our monitor
to return true at this point,

Inspecting the scheme within the URI of the loaded
resource allows Firefox to determine whether it is about
to load a packaged resource, see Line 10. If the resource
is of scheme chrome:, resource:, or about: then it
is safe for our monitor to return true at this point, because
all of these schemes represent packaged and allowed
resources which are safe to load into system privileged
contexts.

As indicated on Line 18, we made some practical
adjustments to our monitoring system. We refer the reader
to Section 5.4 which discusses those adjustments to our
newly introduced CheckAllowLoadInChromeCtxt
function.

If however, we end up at Line 24 within List-
ing 2, then our runtime monitor will raise an asser-
tion and return false because we are about to load
an unexpected scheme. For example, chrome privi-
leged code should never need to load web content
(iframe, image, script, ...) using a remote scheme like
http(s). Additionally, as discussed within Section 3.3,
the insecure resource identifier javascript: should
never need to occur in system privileged context. Sum-
ming it up, if our monitoring system implemented in
CheckAllowLoadInChromeCtxt() detects a non
allow-listed scheme, then it will raise an assertion and
prevent the resource from loading by returning false.

4.4. Hardening using X-Ray Vision

Firefox runs JavaScript from a variety of different
sources and at a variety of different privilege levels, and
at times these privilege levels must interact. The security
machinery in Firefox ensures that there is asymmetric

access between code at different privilege levels. In more
detail, Firefox ensures that content code can not access
objects created by chrome code, but chrome code can
access objects created by content. However, even the
ability to access content objects can be a security risk for
chrome code. X-Ray vision solves that confused deputy
problem [10], wherein content leverages the high semantic
flexibility of JavaScript and mutates JavaScript objects to
behave differently than the privileged actor expects.

1 // Vulnerable Code in privileged context:
2 function getContents(element) {
3 let elementDoc = element.ownerDocument
4 return elementDoc.innerHTML;
5 }
6 // ...
7 getContents(searchbox);

One example of a confused deputy vulnerability is
illustrated in the above code snippet. The vulnerable code
in the above Listing inspects an element from content
code (see Line 2). The code first accesses the defined
property ownerDocument (Line 3) and then returns the
containing document’s HTML (Line 4).

The following attack code shows how to exploit the
above vulnerability:

1 // Exploit Code in content context:
2 <iframe src="http://victim.com"></iframe>
3 <div id="searchbox"></div>
4 <script>
5 var sb = document.getElementById(’searchbox’);
6 Object.defineProperty(sb, ’ownerDocument’, {
7 value: frames[0].document
8 });
9 </script>

Using the above attacker provided code, an adversary
could trick the exposed function getContents() to
return the markup of a cross origin iframe. Please note that
the content script can not access the contents of the cross
origin iframe on Line 2 directly due to the Same Origin
Policy. However, the mutability of JavaScript allows the
adversary to confuse the privileged code by redefining
the trusted ownerDocument property (line 5). In turn,
this confusion would allow the attacker to get access to a
cross-origin iframe.

The fundamental principle of X-Ray Vision is that
dynamic content-controlled data is only exposed through
well-defined access points for a given object type. When
a privileged script accesses a DOM object, it sees only
the native version of the object. If any properties of the
object have been redefined by web content, it sees the
original implementation, not the redefined version. So in
the example above, chrome code accessing the content
element’s ownerDocument would get the original ver-
sion of ownerDocument, not the redefined version of
the adversary.

X-Ray Vision is implemented by identifying the sep-
aration of execution contexts of JavaScript. Once this
identification is made, we can extend the checks logically,
beyond the confused deputy problem. If content code
somehow got a reference to an object from a higher privi-
lege level, here is where access would actually be blocked.
And similarly, although two origins are the same privilege
level insomuch as they are both content-privileged; they
are separate execution contexts and are also blocked.



5. Practical Assessment of Hardening Firefox
Within this section we outline a practical assessment of

the difficulties and unexpected behaviors we encountered
when deploying the hardening techniques described in
Section 4 to the Firefox codebase.

5.1. Some internal pages require remote content
As discussed within Section 4.1 Firefox ships with

a variety of built-in pages. While it is possible to limit
content loading to the packaged and shipped resources
within Firefox for the majority of internal pages, some of
the internal pages need to load content from the internet as
well. For example, when entering about:addons into
the URL Bar of Firefox, the page offers a variety of exten-
sions and themes which allow to customize Firefox. The
offered apps provide functionality to additionally protect
passwords, download videos, customize browser themes
and much more. Since the offered software programs are
often developed by third parties, Firefox needs to provide
a way to safely load a limited set of resources from the
addons website.

Applying a custom Content Security Policy only al-
lowing resources to load over the chrome: protocol as
suggested within Section 4.1 would not work and would
block remote resources. Instead about:addons applies
a CSP similar to the following:

1 default-src chrome:; frame-src chrome: https:;

which allows filling iframes using not only the
chrome: protocol but additionally supports loading of
sub documents using the https: protocol.

We want to apply the most restrictive CSP to every in-
ternal page and only allow well defined remote resources,
like in the case of about:addons iframes for displaying
the extension, to load. Most important for our hardening
efforts is that a CSP of any of the internal pages does
not include the keyword ’unsafe-inline’ within the
script-src or the fallback directive default-src.
Again, the absence of that keyword within a CSP is what
makes sure that any injected JavaScript code does not
execute in the privileged context and hence provides a
strong defense mechanism against code injection attacks.

5.2. Internal tests and debugging require eval()
1 bool CheckAllowEval(nsIPrincipal* aPrincpal,
2 JSContext* aCtx) {
3

4 ...
5

6 static nsString evalAllowlist[] = {
7 // Test-only utility
8 NS_STRING("resource://testing/content-task.js"),
9 // The Browser Toolbox/Console

10 NS_STRING("debugger"),
11 };
12

13 // if allow-listed -> ALLOW
14 nsString fileName = aCtx.getFileName();
15 for (nsString allowlistEntry : evalAllowlist) {
16 if (fileName.Equals(allowlistEntry)) {
17 return true;
18 }
19 }
20 ...
21 }

Listing 3: Practical adjustments to restricting eval() within
chrome privileged contexts.

When running our test suite, we encountered a number
of usages of the eval() family which we attribute to our
testing infrastructure. No attacker can influence the string
to be evaluated and also no attacker can craft a file relying
on the Firefox internal resource: protocol, hence we
decided to allow-list such occurrences of eval() and fo-
cus our efforts on replacing and updating more alarming
use cases of eval() in the Firefox codebase which affect
Firefox end users.

As illustrated on Line 8 and Line 10 within List-
ing 3, we allow-list the filename content-task.js
and debugger respectively. Calls to eval() in first file-
name, content-task.js, can only occur within our
testing infrastructure as the file is not shipped to end users.
Hence we consider it safe to allow-list the calls originating
in that file. Additionally, we allow eval() when it is called
from the Browser Toolbox, which is a development and
debugging aid which can not be influenced by any web
page. If the call to eval() occurs in one of the two contexts,
then our newly added runtime assertions allow the call to
eval by returning true (see Line 17).

While removing eval() support from the parent pro-
cess, we had to make exceptions for two extremely com-
mon idioms for gaining access to the global this object:

1 eval("this");

and

1 Function("return this")

both of which execute constant strings and can not
be injected into, hence we consider those two exceptions
safe.

5.3. Discovering legacy eval() through Telemetry

We started to encounter differences between the Fire-
fox test environment and in-the-wild Firefox configura-
tions with respect to eval() usage, hence we began to
collect Event Telemetry in pre-release builds which re-
ports limited information about eval usage, while simulta-
neously allowing those usages to occur. This telemetry
information provides insights of eval() usages that our
introduced runtime monitor would have blocked, before
potentially downgrading end user experience.

Evaluating Telemetry results allowed us to discover
situations where eval() was being used but at the same
time was not visible from the mozilla-central codebase, for
example in situations where the runtime executes user sup-
plied JavaScript. Historically Firefox supported a mech-
anism which allowed the user to execute user-supplied
JavaScript in the execution context of the browser. Back
then this feature, now considered a stability and security
risk, provided a mechanism to customize Firefox at start
up time and was called userChrome.js. When Firefox
removed support for executing user-supplied JavaScript,
users found a way to accomplish some of the goals using
a mechanism that closely mimicked userChrome.js.

Unfortunately we have no control of what users put
in these customization files, but our runtime checks con-
firmed that in some cases, these userChrome.js-like
scripts included eval. Please note that our threat model
targets injection attacks and leaves powerful attackers out



of scope. If an attacker could place an allow-listed file
on the users computer, then the attacker is already so
powerful rendering our injection prevention techniques
obsolete. Anyway, when we detect that the user has en-
abled such tricks, we disable our blocking mechanism and
allow usage of eval().

Our introduced telemetry will continue to inform the
Mozilla Security Team of newly introduced and/or yet
unknown instances of eval() which we will closely audit
and evaluate and restrict as we further harden the Firefox
Security Landscape.

5.4. Not all remote content is unwanted

When removing support for loading remote web con-
tent in privileged contexts and the parent process (Sec-
tion 4.3) we identified a number of situations we needed
to account for.

1 bool CheckAllowLoadinChromeCtxt(nsIChannel* aChannel) {
2

3 ...
4

5 static nsString loadAllowlist[] = {
6 NS_STRING("http://detectportal.firefox.com"),
7 NS_STRING("https://safebrowsing.google.com"),
8 NS_STRING("http://ocsp.digicert.com"),
9 };

10

11 // if allow-listed -> ALLOW
12 nsIURI* uri = aChannel->GetURI();
13 nsString uriSpec = uri->GetSpec();
14 for (nsString allowlistEntry : loadAllowlist) {
15 if (uriSpec.Equals(allowlistEntry)) {
16 return true;
17 }
18 }
19

20 ...
21 }

Listing 4: Allow-listed set of safe origins in the remote
content filter to maintain existing Firefox functionality.

As illustrated within Section 4 on Line 5, we add an
allow-list of resources that may load in system privileged
context. The list maintains existing Firefox functionality
while lowering default privileges. In particular, the code
to detect captive portals has to issue a request to a HTTP
page (Line 6) to open an opportunity for networks to in-
tercept and redirect. Our added restriction can not simply
block the load, but we limit the possible requests to uses
in fetch() rather than allowing document, image and
script loads. This removes exposure of media parsing and
JavaScript code execution code from insecure HTTP. The
captive portal detection URI is hardcoded within Firefox
and web pages can not influence that URI, hence we
consider it safe to load as a data resource in the system
privileged context.

Another example of data being downloaded is the Safe
Browsing [6] mechanism within Firefox, which updates its
malware list in the background every 30 minutes. A web-
page can not manipulate the URI for updating that list, and
the response is not used with extensive parsing, display
or code execution, hence it is safe to allow-list the URL
https://safebrowsing.google.com, see Line 7.

Further, the resource load
http://ocsp.digicert.com is connecting to
the OCSP (Online Certificate Status Protocol) [23]
responder to determine revocation status of a certificate.

Again, a webpage can not influence the URL for OCSP
and we expose only a limited subset of our parsing code.
Hence we allow the online certificate status protocol on
Line 8.

It’s important to emphasize that the presented allow-
list mechanism provides a secure-by-default mechanism,
which blocks loading of remote resources in privileged
context as well as the parent process. Any exceptions to
it will be well documented and allows the security team
to create a mental model around those exceptions. Trying
to load any other remote resources will be blocked by
default.

5.5. Adapting X-Ray Vision

Initially, the implementation of X-Ray vision for
JavaScript objects was limited to interfaces specified with
an accompanying WebIDL definition [4]. More precisely,
the WebIDL provides expectations about how objects
operate in a programmatic way and hence fundamentally
enabled the architecture of X-Ray vision. Unfortunately
not all objects have such a definition, e.g. those native to
JavaScript are lacking a WebIDL definition.

The lack of a safe interaction channel with objects that
are native to the ECMAScript language but not specified
as WebIDL (e.g., Date) opened up a new attack vector.
Additionally, some WebIDL types like any and object
do not allow for strict type checking which also limited
the capabilities of the X-Ray vision architecture. In more
detail, the DOM standard specifies the detail property
of the CustomEvent interface as type any, which
allows to pass arbitrary JavaScript [37]. Consequently,
such arbitrary strings can include cross-origin objects or
obscure objects with custom, attacker-defined getter and
setter functions.

Addressing the above shortcomings in the design of
X-Ray vision allowed us to additionally harden the ar-
chitecture by building on secure-by-default principles.
Previously, properties defined as objects in WebIDL were
not properly screened and thus transparent to the X-Ray
concept. We added default support for these properties
as well as for built-in objects that are not defined in
WebIDL by leveraging the JavaScript engine’s ability to
treat such objects (e.g., Date). Furthermore, the types
Object and Array do not have well-defined semantics.
As they are frequently used to express simple dictionary-
like structures, we allow traversal by accessing a property
that itself is an Object, and present it as an X-Ray object
with the same restrictions.

For all other types the X-Ray design bypasses any
mutated behavior in the object and instead returns the
original implementation. The design disallows access to
accessor properties (getters and setters), as this would
lead to security issues like unexpected code execution in
a separate privileged context or execute user code that
potentially modifies the object in place while native code
is reading from it at the same time, leading to data races
and memory safety issues.

If an object cannot be viewed through an X-Ray wrap-
per, our security by default mechanism turns it opaque
so privileged code cannot view its attributes or interact
with it, hence avoiding any confused deputy problems in
privileged chrome code.



6. Implementation Considerations

Within this section we will highlight engineering effort
as well as a comparison to other browsers. While the
provided implementation and practical effort was specific
to the Firefox web browser, the emergence of browser-
powered desktop applications, security problems hitherto
reserved for the web domain become increasingly relevant
and pressing for desktop apps.

6.1. Engineering Effort

In order to retroactively harden the Firefox codebase
against code injection and privilege escalation attacks we
landed (up to February 3rd, 2020) 263 changesets with
a total diff of +14,830 and -10,666 lines of code. Over
a period of 18 months, three engineers worked part time
(20 hours a week) on hardening the security landscape of
Firefox and dozens of others provided feedback, guidance
and reviewed the code. Note that Firefox is organized as
modules [18], which means that one of the peers respon-
sible for the code quality within each of the Desktop
Firefox, Security UI, Privacy UI, etc. modules
needs to review and accept a changeset before it can be
merged into the codebase. Since this project modified
code throughout the entire codebase, we had numerous
discussions with reviewers from all those parts of the
codebase. We have invested approximately 4,000 hours
to retroactively harden the codebase of Firefox against
privilege escalation attacks.

6.2. Comparison to other Browsers

While the Chrome Browser is an exception, many Web
Browsers (Edge, Edgium, Opera, Safari, Vivaldi) are based
on open source components, but have a closed-source User
Interface. Unfortunately, this access restriction to source
code makes a direct comparison difficult. However, indi-
vidual reported vulnerabilities provide some insight into
the nature of their design and reveals that other browsers
suffer from similar privilege escalation problems.

For example, Golubovic [9] details a flaw in Vivaldi
that opens up a universal Cross Site Scripting vulnera-
bility. When a SVG image with embedded JavaScript is
opened from the Notes feature, the JavaScript will be
executed in the privileged JavaScript context, allowing
access to the browser’s storage object which contains and
hence grants access to the user’s browsing history.

Similarly, a recent vulnerability disclosed in Edgium
(Chromium based Edge) reveals that a website could
exploit a Cross Site Scripting vulnerability in the New Tab
page to execute JavaScript in a privileged context3. Af-
ter exploring the objects available, the author discovered
that the method chrome.qbox.navigate() passes
unsanitized values to C++, resulting in a likely-exploitable
crash.

Chromium on the other hand is entirely open source,
and lends itself to a more detailed case study and inference
to the shipped Chrome browser. Chrome builds upon a
limited implementation of privileged UI using web tech-
nologies, primarily limited to their equivalent of about

3. https://leucosite.com/Edge-Chromium-EoP-RCE/

pages, which are called chrome pages, not to be confused
with chrome meaning privileged context in this work.
They place similar restrictions on these pages as Firefox
does (see Section 4.1), preventing them from embedding
and fetching remote resources of web content.

In contrast to Firefox, Chrome does not have a concept
of X-Ray Vision; instead they use Isolated Worlds which
do not permit access outside the world. However, two
differently-privileged worlds (such as an extension’s con-
tent script and a web page’s JavaScript) can share access to
the same window and document. In this situation, custom
defined properties on accessible objects are not visible,
but changes to built-in properties like the element’s ID
are. Nonetheless; Chrome encountered situations where it
was possible to gain access to another world’s objects4.

Additionally, Isolated Worlds are not intended to pro-
vide absolute security by default, but rather to create
a base upon which secure scripts can be written. It is
possible for a lesser privileged script to confuse a more
privileged script by polluting the more privileged script’s
world with unexpected variables; this was used to confuse
the LastPass Extension and resulted in Remote Code
Execution5.

Electron is built upon Chromium, but it is intended for
developers to write privileged UI using web technologies.
It provides extensive security guidelines about writing
privileged UI6 and has two privileged sets of APIs known
as Node.js integration and the remote module; these APIs
include the shell.openExternal() API for execut-
ing a program of the author’s choosing. To limit the impact
of a script injection attack; Electron strongly recommends
disabling both Node.js integration and the remote module
on any browser window that loads remote content (as
opposed to pre-packaged UI). This effort to prevent remote
code loading aligns with the efforts of Firefox and Chrome
to prevent privilege escalation attacks.

Similar to Firefox, Electron does support applying a
Content Security Policy to one’s UI. Finally, Electron
does inherit the Isolated World concept, and uses it as
a way to protect Electron APIs and preloaded scripts.
However, Electron does have a couple of very concerning
settings and behaviors: by default any permission prompt
that a web browser would show (e.g. Camera or Geoloca-
tion access) is automatically granted unless the developer
specifically chooses to intercept the request and handle it
in some way. Additionally, it is possible to entirely disable
the same origin policy for a browser window.

7. Related Work

Our presented work emphasizes techniques for hard-
ening the security landscape of Firefox and was influenced
by various approaches to prevent Cross Site Scripting.
For example, Securing the Tangled Web [5] focuses on
preventing script injection vulnerabilities through software
design. Our work removes insecure artifacts in the priv-
ileged chrome code and hence also prevents vulnerabil-
ities through software design. The approach of Trusted
Types [15] is also comparable to our work. The idea

4. https://bugs.chromium.org/p/chromium/issues/detail?id=85158
5. https://bugs.chromium.org/p/project-zero/issues/detail?id=1225
6. https://www.electronjs.org/docs/tutorial/security

https://leucosite.com/Edge-Chromium-EoP-RCE/
https://bugs.chromium.org/p/chromium/issues/detail?id=85158
https://bugs.chromium.org/p/project-zero/issues/detail?id=1225
https://www.electronjs.org/docs/tutorial/security


behind Trusted Types is that it allows web applications to
instruct the browser to only accept non-spoofable, typed
values in place of strings for known DOM XSS sinks and
hence provides a mechanism to prevent DOM based XSS
in web applications. Since in our case we had control over
both, the user agent and the web application code in form
of the user interface code we did not have to annotate any
of our web application code. Instead we modified sinks
within the user agent directly to not allow any calls to
eval() and also to not allow any non-browser packaged
resources to load in system privileged context.

In addition, our work was inspired by numerous
surveys and evaluations of browser security mecha-
nisms ranging from the problematic situation of grant-
ing third-party script access to application internals [20]
to highlighting JavaScript security mechanisms within a
browser [1].

In particular, our efforts focused on preventing priv-
ilege escalation attacks which would allow an attacker
to fully take control of a users computer. Even though
systems like Fidelius [8] - an architecture which protects
user secrets even if the entire underlying browser is fully
controlled by an attacker - would at least protect an end
users private data, any privilege escalation attacks would
still allow an attacker to perform arbitrary actions. To
lower the risk of privilege escalation attacks, our presented
work was further inspired by our colleagues who have pro-
vided a multitude of DOM based XSS prevention mech-
anisms [16], [17], [26], [27], [29]. In principle, privilege
escalation prevention in a browser setting is fundamentally
equivalent to XSS prevention techniques.

Even though server side techniques for preventing
XSS do not directly apply to our presented hardening
efforts, they still provided valuable input for our work [7].

Before applying a strong CSP to Firefox internal pages
we evaluated the effectiveness on the different strategies to
apply a CSP, ranging from allow-list based CSPs to nonce-
based CSPs. Ultimately our hardening techniques require
a guard which blocks all inline script from execution,
hence we settled on a scheme-based CSP which does not
allow any scripts outside of our shipped product, much
less ‘unsafe-inline’ and hence does not allow any
injected script to execute. Still, works from our colleagues
on CSP [2], [3], [11], [14], [22], [24], [25], [35], [36]
heavily motivated and supported our undertaking of hard-
ening the security landscape of Firefox.

8. Conclusion

We have presented techniques which harden the Fire-
fox web browser against privilege escalation attacks.
While the provided implementation and described prac-
tical effort was specific to the Firefox web browser,
the presented hardening techniques apply to all applica-
tions which load and interact with untrusted code like
JavaScript. As more and more applications are built on
top of web technologies the presented techniques target
any application that displays or executes untrusted content
alongside trusted and relies on HTML and JavaScript for
both. We have shown that removing insecure code frag-
ments from a codebase limits the attack surface against
code injection attacks and hence provides a strong first
line of defense against arbitrary code execution.
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