
First-Class Labels:
Using Information Flow to Debug Security Holes?

Eric Hennigan Christoph Kerschbaumer
Stefan Brunthaler Per Larsen Michael Franz

{eric.hennigan, ckerschb, s.brunthaler, perl, franz}@uci.edu

University of California, Irvine

Abstract. We present a system of first-class labels that assists web
authors in assessing and diagnosing vulnerabilities in web applications,
focusing their attention on flows of information specific to their appli-
cation. Using first-class labels, web developers can directly manipulate
labels and express security policies within JavaScript itself, leveraging
their existing knowledge to improve the quality of their applications. In-
troducing first-class labels incurs no additional overhead over the imple-
mentation of information flow in a JavaScript Virtual Machine, making
it suitable for use in a security testing environment even for applications
that execute large amounts of JavaScript code.

1 Motivation

The JavaScript programming language has become indispensable for Web 2.0
applications and powers almost all of today’s banking and electronic commerce
sites. These organizations regularly use JavaScript to process sensitive informa-
tion, such as credit card numbers and user credentials. The ability to perform
client-side processing has facilitated the adoption of interactive pages, while si-
multaneously introducing a new code injection attack vector known as Cross
Site Scripting (XSS). Within the web browser, the JavaScript execution model
allows objects from different domains to reference each other. This architectural
weakness gives adversaries the ability to gain access to sensitive data held within
the browser and manipulated by a page’s code.

Currently, web sites rely on the browser enforced Same Origin Policy [?],
which limits interactions between different domains, with the intent of separat-
ing content from different providers. This restriction applies to separate pages
? This material is based upon work partially supported by the Defense Advanced Re-
search Projects Agency (DARPA) under contract No. D11PC20024, by the National
Science Foundation (NSF) under grant No. CCF-1117162, and by a gift from Google.
Any opinions, findings, and conclusions or recommendations expressed in this mate-
rial are those of the authors and do not necessarily reflect the views of the Defense
Advanced Research Projects Agency (DARPA) or its Contracting Agent, the U.S.
Department of the Interior, National Business Center, Acquisition Services Direc-
torate, Sierra Vista Branch, the National Science Foundation, or any other agency
of the U.S. Government.

and iframe’s, but does not prevent method and memory access when the host
page includes a third party script, such as the JQuery library or a syndicated
advertisement. The lack of isolation between scripts from separate origins that
execute on the same web page, threatens the privacy of all web users.

Other systems implementing information flow within a web browser [?,?,?]
attempt to perform fully automatic labeling, with no feedback from the devel-
oper. Because privacy concerns are application specific, we present an alternative
approach that additionally provides developers with the ability to selectively fo-
cus on specific information flows within their web application. Without domain
knowledge, fully automatic frameworks detect and report information flows, such
as requests from content distribution servers, that application developers would
prefer to disregard.

Based on our experience, we think that information flow tracking shows more
promise as a web application security debugging tool, if it can help the developer
focus only on flows relevant to an XSS vulnerability. We achieve this goal by
extending an existing information flow tracking browser with a system of first-
class labels that developers can use to inspect their application. By selectively
tagging only those variables considered security sensitive, developers can focus
their attention on flows of specific information, and avoid sifting through the
morass of reports generated by automated tracking systems. We envision web
developers using the first-class labeling system as part of a testing environment
to answer common auditing questions: “Does this sensitive data ever influence a
network request?” and “What values does this object influence?”

After presenting the threat posed by attackers (Section ??), we establish
information flow terminology (Section ??) to clarify the capabilities of the un-
derlying tracking engine on which we base our work. We then introduce details of
the supporting information flow framework (Section ??) relevant to the following
contributions:

• We extend JavaScript’s syntax and semantics (Section ??) introducing a
reflective FlowLabelObject and new labelof operator.

• To the best of our knowledge, we are the first to provide a first-class labeling
system within JavaScript (Section ??) that allows developers to selectively
tag application specific sensitive information from a webpage and compose
security policies in JavaScript.

• We demonstrate the utility of the first-class labeling system by showing an
attack that aims to exfiltrate sensitive user information and a JavaScript-
specified network policy that stops the attack (Section ??).

We evaluate (Section ??) our first-class labeling system demonstrating that
it maintains performance, resists JavaScript-level attacks against itself while
exposing underlying security data structures, and provides a mechanism that the
web developer can effectively use to debug security holes in a web application.

2 The Attacker’s Threat

Throughout this work, we assume that the attacker has already injected code
into the developer’s web application. The attacker exploits an XSS vulnerability
to inject code in the developer’s web application, supplying a JavaScript payload
via an included advertisement, mashup content, or library, or via an unsanitized
form or URL. Although we limit the attack payload to JavaScript, we assume
that its origin does not make it distinguishable from the rest of the web appli-
cation’s JavaScript codebase. The attacker also has publicly-facing knowledge
about the application, obtained by visiting and interacting with the application
and observing its behavior, which can be used to craft the payload. We also
assume that the attacker controls their own web server.

These abilities combine to pose an information leak threat. The code injected
into the web application executes with the full abilities of that application. The
attacker crafts the payload to exfiltrate application sensitive information, such
as personal login credentials, text the user enters into forms, or anything the
web application displays to a visitor. The pilfered information leaves the appli-
cation as part of a resource request submitted to the attacker controlled server,
circumventing the Same Origin Policy.

For a typical example, exfiltration code embeds the sensitive data into a URL
and attaches that URL to the src attribute of a payload generated img element.
The web browser automatically issues a GET request for the image targeting
the attacker controlled server. The attacker then reviews server request logs to
harvest the exfiltrated information.

2.1 The Developer’s Response

Knowing that the origin of attacker code does not reliably distinguish it from the
rest of the web application, we focus on the malicious behavior of any code within
the application. Indeed, an information leak might be the unintended result of
a careless or uninformed application developer, rather than an attacker.

In response to this threat, a security-conscious developer tests their applica-
tion in a web browser that monitors the flows of information within the appli-
cation. To assist the developer in focusing their debugging attention on specific
pieces of sensitive data within the application, we present a labeling system as a
first-class language construct. Without leaving JavaScript, the developer creates
a label and applies it to the sensitive data, tagging it with a unique identifier.
The underlying information flow engine tracks the interaction of application (and
injected) code with this sensitive data, ensuring that exfiltration code does not
drop the label.

We present a mechanism that allows the developer to write a network monitor
using JavaScript, so that they may observe a leak of information tagged as
sensitive. The developer implements their own network monitor logic to inspect
the labels of all resource requests, enabling the detection and debugging of an
information leak.

Category Descriptor Example Flow Required Analysis

Explicit
Direct b = a a ⇒ b Dataflow

Indirect b = foo(_, a, _)
c = bar(_, b, _)

a ⇒ c Dataflow (transitive)

Implicit

Direct

if (a)
b = 1

else
b = 0

a ⇒ b Control Flow (dynamic)

Indirect

c = true
if (a)

b = false
if (b)

c = false

a ⇒ c Control Flow (static)

Table 1. Terminology of Information Flows.

3 Information Flow Terminology

Previous research in the field of information flow applied to dynamic languages
reveals a need for clarifying terminology that goes beyond the basic categories
introduced by Denning and Denning [?]. We follow this trend by extending the
established categories with easy-to-remember descriptors. We intend for the ter-
minology introduced here to bring clarity and precision to the research describing
information flow systems, especially research targeting dynamic languages. The
more refined terminology allows us to characterize the capabilities of the infor-
mation flow tracking engine (Section ??) which supports the first class label
system introduced in this paper (Section ??).

3.1 Explicit Information Flows

An explicit flow occurs as a result of a dataflow dependence. Table ?? breaks
this category down into two descriptors: direct, corresponding to an immediate
dependence, and indirect, corresponding to a transitive dependence.

Explicit Direct Flows occur when a value is influenced as a result of direct
data transfer, such as an assignment. A simple single-statement, intra-procedural
dataflow analysis can identify these flows. Subexpressions involving more than
one argument also have a direct explicit information flow from all argument val-
ues to the operator’s resulting value. Any labeling or tagging framework that
tracks security type information across direct explicit flows includes basic se-
mantic rules for label propagation in each of the language’s operators.

Explicit Indirect Flows occur as the transitive closure of direct flows.
Identification of indirect flows requires more powerful multi-statement or inter-
procedural dataflow analysis. The code example for indirect flows in Table ??
shows the transitive nature of this analysis via a functional dependence between
values. This paper preserves the use of the term “indirect” as originally defined
by Denning and Denning [?].

3.2 Implicit Information Flow

An implicit flow occurs as a result of a control-flow dependence. Table ?? breaks
this category down into to descriptors: direct, corresponding to a runtime depen-
dence, and indirect, corresponding to a static dependence.

Implicit Direct Flows occur when a value depends on a previously taken
control-flow branch at runtime. Identification of this dependence requires a tracked
program counter and a recorded history of control-flow branches taken during
program execution. Presently, systems that track the program counter to propa-
gate dependence information are known as “dynamic information flow tracking”
systems.

Implicit Indirect Flows occur when a value depends on a control-flow
branch not taken during program execution. Identification of this dependence
requires a static analysis prior to program execution. Because the dependence
follows code paths not taken at runtime, these flows are notoriously difficult
to detect in dynamic programming languages. Unfortunately, even static lan-
guages include features, such as object polymorphism and reference returning
functions, which make the receiver of an assignment or method call unknown
at compile time. Dynamic programming languages, such as JavaScript, include
first-class functions, runtime field lookup along prototype chains, and the ability
to load additional code at runtime via eval. These features prohibit even a run-
time analysis from identifying all the values possibly influenced in all alternative
control-flow branches.

4 Supporting Framework

The framework which supports the first-class labeling system presented in this
paper implements dynamic information flow as part of the JavaScript Virtual
Machine (VM). Any viable information flow system within a web browser must
support runtime creation and application of labels because security principals
represented on a web page do not become known to the browser and JavaScript
VM until a user visits the page. Every JavaScript value carries a label rep-
resenting an element from the finite powerset lattice over principals. The VM
conservatively labels the result of every operation with the union (join) of the
labels of its inputs, monotonically moving up the lattice of security principals.
To prevent attack code from removing or downgrading the labels applied to val-
ues tracked by the VM, the labeling framework does not currently provide a
mechanism for declassification (i.e., it does not expose an intersection (meet)
operation).

4.1 Storage of Security Principals and Labels

The underlying labeling framework allows any JavaScript value to be used as a
security principal. Our first-class labeling system merely exposes this ability as
a concise labeling API to the JavaScript developer. As we shall see (Section ??),

FlowLabelRegistry mapping
"example.com" 0001
"pwd" 0010
"ad.com" 0100

"example.com"
0001

"pwd"
0010

"ad.com"
0100

"example.com" t "pwd"
0011

"example.com" t "ad.com"
0101

"pwd" t "ad.com"
0110

"example.com" t "pwd" t "ad.com"
0111

Fig. 1. The FlowLabelRegistry mapping three JavaScript strings used as security
principals to unique bit positions. These principals form a lattice of security labels,
represented as bit vectors.

the ability to use any JavaScript value as a principal gives web authors enough
power to represent security principals as a native part of an application’s code.

The supporting information flow VM interns every JavaScript value used
as a security principal in the FlowLabelRegistry, mapping it to a unique bit
position. Figure ?? depicts the interning of three JavaScript string objects,
"example.com", "pwd", and "ad.com", each representing a security principal
in the FlowLabelRegistry. To minimize the attack surface on the system itself,
our first-class extensions (Section ??) do not make this data structure accessible
to the JavaScript programmer.

As shown in Figure ??, the mapping held by the FlowLabelRegistry allows a
bit vector to represent each security label. The supporting VM attaches to every
JavaScript value a security label, representing an element from a powerset lattice
over security principals. Current implementation of the underlying information
flow framework does not support more than 64 unique principals. However, we
have not found this to be a problem in practice (Section ??).

4.2 Label Propagation

Our labeling system rests atop a pre-existing, JavaScript information flow VM
that provides every JavaScript primitive and object reference with a security
label. The supporting VM propagates labels through data flows and maintains a
shadow stack of labels attached to the program counter [?] that tracks influence
through control-flow transfers taken at runtime. These mechanisms allow it to
track up to implicit direct information flow (as defined in Section ??).

Performing information flow tracking at the VM level allows the supporting
framework to avoid potential attacks on the tracking system itself. This design
reduces the attack surface compared to JavaScript rewriting systems [?,?].

Exposing the underlying framework through our first-class labeling system
might create a new attack surface (targeting the underlying label framework
itself) meant to be hidden by design. As a result of this concern, we chose

not to support declassification through our first-class labeling system. Both the
JavaScript developer and any potential JavaScript attack code can only create,
apply, and inspect labels, but cannot remove them.

1 function sniffPassword(pw) {
2 var spw = "";
3 for (var i = 0; i < pw.length; i++) {
4 switch(pw[i]) {
5 case ’a’: spw += ’a’; break;
6 case ’b’: spw += ’b’; break;
7 ... // other characters elided
8 }
9 }

10 return spw;
11 }

Listing 1.1. Password sniffing via implicit direct information flow.

Listing ?? gives an example of an attacker provided function which attempts
to drop any label attached to the argument pw. The existing label framework
can track the control-flow dependence of the return variable (spw) on the ar-
gument (pw) at both the loop condition (pw.length) and the switch condition
(pw[i]). By performing such tracking, the returning variable spw subsumes the
same set of principals as the incoming function argument pw. The tracking and
propagation engine prevents the attacker from dropping labels through implicit
direct information leaks in exfiltration code.

4.3 Information Flow in the Browser

Our first-class labeling system resides in a web browser that consists of a hosted
JavaScript VM and additional subsystems for information storage, rendering,
document description, and network communication. These other subsystems rep-
resent covert channels through which an attacker may communicate information.
Currently, the supporting framework automatically applies labels to dynamically
loaded code and resources according to the site of origin.

In addition to storing visible page elements, the Document Object Model
(DOM) allows creation of invisible elements within the document that can be
used to store and communicate information. The supporting framework prop-
agates labels to HTML elements and attributes within the DOM so that an
attacker cannot use it as a channel to remove labels.

The information flow tracking web browser also contains a network moni-
tor that observes the labels on all network traffic: dynamic requests for remote
resources such as images and stylesheets, HTTP GET and POST methods for
forms, and XmlHttpRequest for AJAX. Our first-class labeling system presents
to the web developer a mechanism for registering JavaScript functions which
implements network monitor logic, enabling the developer to inspect labels at-
tached to resource requests and thereby discover information leaks.

5 Design and Implementation of First-Class Labels

Before discussing the first-class label interface that a JavaScript developer uses
to hook into the supporting information flow framework, we first give details
explaining the extensions and modifications necessary to support labels as first-
class JavaScript objects.

5.1 Reflecting Labels into JavaScript

The supporting framework contains a FlowLabelRegistry that maps primitive
values and JavaScript objects used as principals to a position within a bit vector
label. By holding a reference to every JavaScript object (within the standard
heap) used as a principal, the FlowLabelRegistry keeps it alive during garbage
collection. Because of the limited number of principals which can exist within
the system (Section ??) the FlowLabelRegistry does not release any principals.

Our first-class labeling system reflects the underlying labels into the JavaScript
language, as native JavaScript objects, via a FlowLabelObject wrapper. When
reflected into JavaScript as FlowLabelObject instances, security labels can them-
selves be labeled and can also act as security principals, just like any other
JavaScript value. Additionally, they are callable objects, providing an interface
to apply the internally stored label onto any given argument value. In the in-
terest of clarity, we do not use any examples that exhibit the inherent recursive
nature of the first-class labeling system.

FlowLabel Prototype

+ 〚toString〛
+ 〚construct〛
+ join
+ subsumes

FlowLabelObject

+ 〚call〛

-〚prototype〛

Fig. 2. UML class diagram of the first-class labeling system. Our system introduces the
FlowLabel prototype constructor, and FlowLabelObject instances. As in the ECMA [?]
language standard, 〚•〛 indicates implementation internal methods.

Our first-class labeling system also introduces a singleton FlowLabel pro-
totype, which both holds methods common to all FlowLabelObject instances
and provides an interface through which the JavaScript developer can construct
FlowLabelObjects. Figure ?? uses UML to depict the relationship between the
FlowLabel prototype singleton and FlowLabelObject instances.

5.2 JavaScript Syntax Extension to Retrieve Labels

Our first-class labeling system implements a small change to the JavaScript
language permitting JavaScript code to retrieve a label from a given value. We
introduce the keyword labelof, as a new case in the UnaryExpression grammar
rule of the ECMA [?] language standard. Figure ?? presents the entire grammar
rule, including our new language keyword.

UnaryExpression:
PostfixExpression
delete UnaryExpression
void UnaryExpression
typeof UnaryExpression
++ UnaryExpression
– UnaryExpression
+ UnaryExpression
- UnaryExpression
~ UnaryExpression
! UnaryExpression
labelof UnaryExpression

Fig. 3. Modified JavaScript grammar rule for UnaryExpression. Our first-class labeling
system introduces the labelof keyword.

5.3 Network Hook in the Web Browser

To permit the enforcement of policies written in JavaScript, we make one ad-
ditional change to the web browser hosted JavaScript environment. Our first
class labeling system exposes the underlying network monitor through a func-
tion, registerSendMonitor(fn) on the hosted navigator object. Using this
feature, the web developer can phrase application specific security policies con-
cerning allowed network communication as a JavaScript function within the web
application itself. Once registered, these functions act as network monitors that
inspect the payload of all resource requests before being sent over the network.

6 Using First-Class Labels

We design the first-class labeling system and its JavaScript API according to
the functional programming paradigm, with the purpose of making it easier
for web developers to adopt. The first-class labeling system contains one minor
syntax change to the JavaScript grammar, introducing the new labelof operator
and keyword. The system also extends the hosted environment (not the ECMA
specification) with a new built-in FlowLabel prototype constructor object that
holds methods for label composition (join) and comparison (subsumes). Labels
take the form of native built-in FlowLabelObject instances, and behave with the

same semantics as any other JavaScript object. Our first-class labeling system
makes a minimal set of changes necessary to expose the underlying information
flow framework.

We show how our framework detects and prevents information leakage that
might occur due to a script injection attack. In the following examples we show
output of our system at the JavaScript console. All statements executed by the
console begin with a ‘>’. The console describes the resulting value in two parts:
the value itself and the label attached to that value.

6.1 Label Creation

Our system introduces a FlowLabel prototype singleton to the JavaScript en-
vironment hosted by the web browser. This object implements the internal
〚construct〛 method so that JavaScript code may create first-class label ob-
jects. The web developer may choose any valid JavaScript value to act as a
security principal, and pass that value into the constructor. After interning the
provided value in the underlying framework’s FlowLabelRegistry, the construc-
tor returns a FlowLabelObject instance. Interning the principals allows unique
identification of labels held by FlowLabelObject instances. In the interest of
avoiding attacks on the labeling system itself, our system does not provide pro-
grammatic access to the FlowLabelRegistry.

1 > pwdLabel = new FlowLabel("pwd");
2 [FlowLabelObject pwd] [FlowLabel example.com]

Listing 1.2. Creating a Label Object.

Listing ?? shows a web developer creating a label using the JavaScript string,
"pwd", as a security principal. The underlying information flow framework auto-
matically applies a label to every resource representing its domain of origin. Con-
sequently, the resulting FlowLabelObject instance returned from the construc-
tor itself carries a label representing the origin of this code snippet: example.com.

6.2 Label Application

The FlowLabelObject instance acts as a first-class wrapper object around an
internal bit-vector representation of a security label. The FlowLabelObject in-
stance also implements the internal 〚call〛 method, so that the security label
may be attached to other JavaScript values, When the FlowLabelObject functor
is passed a value, it unions that value’s current label with its internally stored
label and returns the result.

3 > pass = "24 sk09nk12";
4 24 sk09nk12 [FlowLabel example.com]
5 > pass = pwdLabel(pass);
6 24 sk09nk12 [FlowLabel pwd , example.com]

Listing 1.3. Applying a Label to a JavaScript Value.

Listing ?? shows the JavaScript developer applying the password label con-
structed previously (Listing ??), pwdLabel, to a string, pass. After label appli-
cation, the resulting password string carries a label describing both the domain
of origin, example.com, and the password security principal, "pwd".

6.3 Label Retrieval and Comparison

We now assume that the attacker injects code using sniffPassword (Listing ??)
in an attempt to drop the label of the user’s password. Because the underlying
framework tracks labels inter- and intra-procedurally with respect to both data
and implicit direct control flows (Section ??), the label on the resulting sniffed
password carries both the attacker’s principal and the user’s password principal.
Our first-class labeling system exposes the network object to JavaScript, allowing
interception of the information leak at the time of a network request.

1 navigator.registerSendMonitor(
2 function(method , url , payload) {
3 if (method == ’GET’) {
4 var lab = new FlowLabel("example.com");
5 lab = lab.join(new FlowLabel("pwd"));
6

7 if (!lab.subsumes(labelof url))
8 log(url + " has unexpected label");
9 if (!lab.subsumes(labelof payload))

10 log(payload + " has unexpected label");
11 }
12 // other types of network request elided
13 return true;
14 });

Listing 1.4. Developer Provided Network Monitor Function.

Suspecting a possible information leak, the web developer implements a net-
work monitoring logic in a JavaScript method, and registers it through the
navigator.registerSendMonitor method. When the attack code attempts to
communicate the pilfered information over the network, our labeling system first
executes all registered monitors (in registration order) to determine if the request
conforms to the developer-specified policy.

Listing ?? shows an example network monitor that takes advantage of the
labels automatically applied by the underlying information flow framework. On
Line 4, the developer creates a label representing the security principal, example.
com. The FlowLabelRegistry’s interning of principals ensures that any labels
created in this monitor function exactly match the same labels created elsewhere.

Through prototype-based inheritance, all FlowLabelObject instances have
a join method that returns a new FlowLabelObject instance representing the
union of its argument FlowLabelObject instances. On Line 5 of Listing ??,
the developer joins the security principal example.com with "pwd" to compose
together existing labels into a single label representing the union of all principals
the developer wishes to allow in an HTTP GET request.

Information flow propagation within the VM labels each new value with the
join of the labels of the arguments used to construct that value. Consequently, la-
bel propagation naturally results in values labeled with more than one principal,
even when the original program only seeded a few values, each with a single prin-
cipal. In response to this phenomenon, our developer uses the subsumes method
(Line 7 and Line 9 of Listing ??) to check that the label of the request is a subset
of all allowed principals. Although our first-class label wrappers also permit strict
equality comparison (JavaScript operator ===) between two FlowLabelObject
instances, we strongly encourage using the subsumes relation for expressing secu-
rity policy constraints using subsets of principals. This practice allows catching
all values with labels below the given upper bound (supremum).

Our labeling extension introduces the labelof operator so that JavaScript
code can retrieve labels attached to variables for inspection and application.
On Line 7 and Line 9 of Listing ??, the developer uses this operator to obtain
the label attached to the target request url, and network payload. Because
the underlying framework propagates labels following data flows, the resulting
FlowLabelObject instance returned from labelof operator is itself labeled with
the union of the provided argument and current program counter. If desired, the
developer may use the resulting FlowLabelObject instance to label other values.

In the example shown in Listing ??, the developer constructs a label over the
password principal, "pwd", at two different code locations: once to label the user’s
input and again in the network monitor. This practice causes no problem for our
system, because the FlowLabelRegistry interns principals, allowing our system
to consider identical, two FlowLabelObject instances constructed in different
code locations but with equivalent JavaScript values.

7 Evaluation

To evaluate the effectiveness of our system for security debugging we examine
four dimensions:

Performance. We show that underlying information flow framework is fast
compared to other work and argue that the first-class labeling system intro-
duces negligible overhead.

Completeness. The labeling system inherits the code coverage of the support-
ing information flow framework.

Security. We argue that the labeling system revealed to the JavaScript pro-
grammer does not present a new attack surface in any significant way.

Usability. We demonstrate how developers can use the system to debug security
vulnerabilities in their web applications.

We evaluate the effectiveness of our system as a web application security
debugging tool. We measure the robustness and performance of the underly-
ing labeling framework, demonstrating that even sites with large libraries of
JavaScript code present no execution difficulties. We also use the first-class la-
beling system to find and debug an XSS vulnerability.

7.1 Performance

The supporting framework, termed FlowCore, modifies WebKit’s JavaScript en-
gine JavaScriptCore (version 1.4.2) to attach labels to every value. Additionally,
it contains data structures relevant for mapping label bits within a label to do-
mains (the FlowLabelRegistry) and for propagating implicit direct information
flow dependencies. To evaluate the costs imposed by FlowCore, we test it against
an unmodified JavaScriptCore of the same version.

Because FlowCore implements tracking only in the interpreter, we execute
both JavaScript engines with just-in-time compilation disabled. A dual Quad
Core Intel Xeon 2.80 GHz with 9.8 GiB RAM running Ubuntu 11.10 executes all
benchmarks (at niceness level -20). We choose to use the SunSpider [?] bench-
mark suite because its status as the standard benchmark suite for JavaScript
makes it suitable for comparisons to other work. SunSpider includes test cases
that cover common web practices, such as encryption and text manipulation.
This benchmark test provides a measure of the baseline overhead involved in
maintaining information flow data structures and propagating labels.

3d 1.93

access 1.98

bitops 2.11

controlflow 3.20

crypto 2.18

date 2.01

math 1.94

regexp 1.05

string 1.62

mean 1.77

0 50 100 150 200 250

FlowCore
JavaScriptCore

Time (ms)

Facto
r

 D

iffe
rence

Fig. 4. SunSpider Benchmark results: JavaScriptCore vs. FlowCore.

Figure ?? reveals overall execution speed of JavaScript benchmark results: the
mean execution time of FlowCore is 158.33 ms whereas the mean execution time
of JavaScriptCore is 89.44 ms. The SunSpider benchmark does not contain first-
class labeling operations, so the overall 77% slowdown represents the overhead
incurred by the supporting framework’s implementation of label propagation. In
comparison, other information flow approaches [?] introduce a 150% slowdown
making programs two to three times slower.

The VM stores labels as bit vectors attached to values and performs label
propagation via bitwise-or. This representation ensures that first-class label ob-

jects are only present when explicitly constructed (new FlowLabel) or retrieved
(labelof) by the developer. As a result, the introduction of the first-class la-
beling system into the hosted environment incurs no additional runtime per-
formance overhead compared to a fully automatic labeling system. We do not
evaluate the performance impact of the network hook, because it is insignificant
within a debugging environment and the developer has the power to implement
any monitor function they desire.

The performance of the underlying labeling framework implies that even sites
with large amounts of JavaScript code execute without noticeable slowdown.
To test whether the information flow tracking framework causes a noticeable
performance decrease, we visited (and logged into) JavaScript intensive sites,
such as Facebook, GMail, Google Maps, Bing, GitHub and Cloud9 IDE. These
sites do not make use of the first-class labeling system introduced in this paper.
However, user interaction proves that the performance overhead of the labeling
framework does not introduce any usability issues.

7.2 Completeness

To verify that the underlying framework does not introduce any runtime bugs
when interpreting either machine-generated or human-written JavaScript found
in the wild, we automated the visiting of all sites in the Alex Top 500 [?]. This
webcrawler injects code into each page, to perform two actions: (1) attach a
network monitor and (2) fill out and submit the first form on the page using
data labeled with an identifying principal. The injected monitor verifies that the
submitted form generates a request containing the identifying principal.

Not only do we verify the label propagation engine against code in the wild,
but we also use the first-class labeling system to develop a suite of unit test
cases for ensuring the semantic correctness of the underlying labeling frame-
work. Without first-class labels, we would be far less confident of the semantic
correctness of the underlying framework’s implementation of label propagation.

7.3 Security

The underlying framework, FlowCore, generates, at runtime, new security princi-
pals for every unique label generated by the developer and new domain encoun-
tered by the web browser. Introduction of runtime principals requires mutation of
the FlowLabelRegistry. By design, FlowCore does not support declassification,
preventing a communication channel via the labeling framework itself.

Our first-class labeling system exposes, to the web application and any in-
jected code, a JavaScript API for creating and applying labels to JavaScript
values. This exposure represents a new attack surface that might allow an at-
tacker to target the labeling framework. However, we envision the web developer
using the first-class labeling system only in a testing environment, where it pro-
vides no benefit to the attacker. Nevertheless, the lack of declassification means
that the attacker-injected code cannot drop labels applied by the developer for
debugging purposes.

Finally, our system allows registration of many monitor functions, through
a JavaScript interface accessible by code injected into the web application. Our
labeling system evaluates all monitor functions registered, in registration order.
The developer-supplied monitor function always executes, even if the attacker’s
injected code happens to register a different monitor function first.

7.4 Utility as a Debugging Tool

To evaluate our first-class labeling system as a tool for testing web applications
and discovering security vulnerabilities, we create a web page that contains a
user login form. Acting as a malicious developer, we insert code into the page,
which uses the sniffPassword label dropping code prior to exfiltrating the form
contents to a second server via both an XmlHttpRequest and as part of an
img.src URL. Acting as a security researcher, we mirror the page and add
labeling code that applies a tag to the form’s DOM node and a network monitor
function that checks for the unique tag. Visiting the mirrored page successfully
triggers the monitor function, alerting us to the exfiltration. WebKit’s developer
tools assisted us with finding the portion of the page responsible for generating
the image request.

For a more realistic example, we attempt a similar attack using a mirrored
ebay.com page obtained from XSSed [?], this time targeting the site’s cookie.
This page loads content from several different sources, and contains an XSS vul-
nerability that we exploit to inject the exfiltration code. Because the underlying
framework automatically labels the cookie with the domain of origin, we did not
need to insert labeling code. Instead, we find it sufficient to implement a network
monitor that checks only whether data sent to an origin does not contain third-
party principals. This monitor detected the exfiltration of the cookie (labeled
with ebay.com) being sent to a server other than ebay.com. Again, WebKit’s
developer tools assisted us with pinpointing the JavaScript code responsible for
the request.

8 Related Work

Developer Accessible Labels: To the best of our knowledge, no other work in-
corporates a first-class labeling system into a dynamically typed programming
language. This feature allows the developer to construct label objects, apply
them to label other program values, compose them together, and use them as
part of natively programmed policy functions.

Myers et al. [?] introduce a security-type system that allows annotation of
Java types with confidentiality labels that refer to variables of the dependent
type label [?]. Java does not represent types as first-class entities, but the Jif
programmer does have the ability to use the labeling features to program func-
tions with statically type-checked information flow properties. Our work provides
a similar, but simpler, labeling system for the dynamically-typed JavaScript.

Li and Zdancewic [?] present a security sublanguage that expresses and en-
forces information-flow policies in Haskell. Their implementation supports dy-
namic security lattices, run-time code privileges, and declassification without
modifications to Haskell itself. The type-checking proceeds in two stages: (1)
checking and compilation of the base language followed by (2) checking of the
secure computations at runtime just prior to execution of programs written in the
sublanguage. In contrast, our work presents extensions to an existing JavaScript
environment and does not require rewriting of existing programs into a secure
sublanguage.

JavaScript Information Flow Systems: Other research on language-based infor-
mation flow specific to JavaScript relies on automatic labeling frameworks that
seek to provide end-users with secure browsers and minimize developer. Our sys-
tem seeks to leverage web developer domain knowledge about their application
as part of a security testing environment.

Vogt et al. [?] modify Firefox’s JavaScript engine, SpiderMonkey, to moni-
tor the flow of sensitive information using a combination of static and dynamic
analysis. Before execution, their modified VM statically analyzes each function
via abstract interpretation to detect and mark implicit information flows. Their
framework automatically taints objects provided by the browser (e.g., Document,
History, Window, and form elements) and enforces information flows according
to the Same Origin Policy. Our supporting framework also automatically labels
dynamically loaded code according to the Same Origin Policy, but our contribu-
tion of first-class labels allows the developer to specify security policies specific
to their application in native JavaScript.

Just et al. [?] modify the JavaScriptCore VM in WebKit to perform informa-
tion flow tracking for eval, break, continue, and other control-flow structures.
Our supporting framework achieves the same analysis with better performance
due to difference in implementation details. This work moves beyond implemen-
tation of an information flow tracking engine to reflect portions of the labeling
engine into the JavaScript environment, to enable targeted security debugging.

Chugh et al. [?] attack the problem of dynamically loaded JavaScript by us-
ing staged information flow. Their approach statically computes an information
flow graph for all available code, leaving holes where code might appear at run-
time, and subjecting dynamically loaded code to the same analysis as soon as
it becomes available. They also introduce a new policy language to the existing
babel of languages used for web development. In contrast, our supporting frame-
work avoids delaying code execution and shifts analysis of information flows to
runtime and enables the developer to write policies in JavaScript itself.

Jang et al. [?] employ a JavaScript rewriting-based information flow engine to
document 43 cases of history sniffing within the Alexa [?] Global Top 50,000 sites.
In contrast, our supporting framework performs label propagation in the VM,
increasing performance and preventing attackers from subverting the system.

Type-Checking JavaScript for Information Flow: Many researchers give type
systems intended to analyze JavaScript programs for information flow secu-

rity. Austin and Flannagan, in conjunction with Mozilla, promote sparse la-
beling techniques intended to decrease memory overhead and increase perfor-
mance [?] and provide a formal semantics for partially leaked information [?].
Hedin and Sabelfeld [?] provide Coq-verified formal rules that cover object se-
mantics, higher-order functions, exceptions, and dynamic code evaluation, pow-
erful enough to support DOM functionality. Efforts along this line of research
typically cover a core of the JavaScript specification, and have not seen wide-
spread adoption. We forgo formalized verification in a practical effort to target
adoption of our work by developers focused on security debugging rather than
end users.

JavaScript Language Policies: Meyerovich and Livshits introduce an aspect ori-
ented framework, named ConScript [?] that supports weaving specific secu-
rity policies with existing web applications. Using their framework, web authors
wrap application code with security monitors specified in JavaScript. Their sys-
tem supports aspect wrapper functions around arbitrary code, while we focus
on monitoring network traffic. An aspect oriented approach cannot detect and
prevent information leaks that occur due to control-flow transfers as exhibited
in Listing ??.

9 Conclusion

We present to the JavaScript developer a first-class labeling system that exposes
an underlying information flow framework. Developers can use their domain
knowledge to label JavaScript values within their application and construct net-
work monitor policies that selectively ignore automatically applied labels. Our
labeling system provides dynamic creation of security principals, supporting the
common practice of loading code and resources from many different domains in
web applications.

We introduce a new built-in FlowLabelObject class, which the developer uses
to selectively label JavaScript values. The developer creates FlowLabelObject
instances using existing JavaScript values as security principals or by composi-
tion with other FlowLabelObject instances via the lattice join method. The
subsumesmethod allows comparison of all FlowLabelObject instances reporting
their subset relation within the label lattice. Together with the ability to retrieve
labels attached to values via the new built-in labelof operator, our system gives
the developer the means to implement security policies in JavaScript.

The first-class labeling system introduces no additional slowdown beyond
that of an information flow VM, enabling its use in a testing environment for
sites that have large amounts of JavaScript code. By leveraging their domain
knowledge and existing JavaScript experience, developers can focus on iden-
tifying and debugging application specific information flows. First-class labels
allow developers to improve the security of their applications by writing policies
in JavaScript that selectively ignore the high quantity of reports produced by
automatically attached labels.

