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Kurzfassung

Die Benutzung von Mobiltelefonen, PDAs und anderen mobilen Geräten ist in den
letzten zehn Jahren drastisch angestiegen. Java, als eine der beliebtesten Ausführungsum-
gebungen, findet besonders häufig Verwendung auf solchen Systemen. Da mobile Geräte in
ihrer Speicherkapazität stark limitiert sind, Java jedoch zum Ausführen eines Programms
eine hohe Anzahl an Bibliotheken benötigt, ist es Ziel dieser Arbeit, den gesamten übe-
flüssigen Code sowie Metainformationen auf dem mobilen Gerät zu entfernen und auf dem
Server zu belassen. Genau auf diesem Ansatz beruht die Idee der Slim Virtual Machine.

Diese Arbeit präsentiert eine neue Generation von “permanent verbundenen mobilen
Geräten“, wobei der gesamte Code auf einem Netzwerk-Host verbleibt und von der Java
Virtual Machine am Client partiell angefordert wird. Hierzu wird der gesamte Programm-
und Bibliothekscode am Server analysiert, und nur der Code, der unmittelbar für die
Ausführung des Programms benötigt wird, während der Laufzeit zum Client transferiert.
Hierfür wird Java Bytecode am Server manipuliert und in Form von “fertig gelinkten“
Blöcken an den Client geschickt, da diese die kleinste logische Einheit von Java Bytecode
darstellen. Die daraus ergebenen Messungen zeigen, dass diese neu entwickelte Methode
eine Reduzierung des Memory Footprints von bis zu 70% zulässt.

Schlüsselwörter: Java virtuelle Maschine, Optimierung, Codeoptimierung
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Abstract

The usage of cellular phones, PDAs and other mobile devices has increased dramat-
ically over the past ten years. Java is targeted to be one of the most popular execution
environments on such systems. However, since mobile devices are inherently limited in
terms of local storage capacity and Java requires large amounts of library code to be
present on each client device, it is crucial to reduce the code footprint to ensure Java’s
success on such systems. The SlimVM approach is aiming at replacing all unnecessary
code on mobile devices.

This thesis presents a solution for the next generation of mobile computing environ-
ments for persistent connected embedded systems where all code resides on a network host
and is requested by the Java virtual machine on the client at run time. All application and
library code is analyzed on the server prior to execution on the mobile device, and only
code essential for execution is sent to the client on demand. Therefore, Java bytecode is
manipulated and transferred to the client in the form of pre-linked basic blocks as this is
the smallest granularity of Java bytecode. Measurements show a reduction of the memory
footprint of up to 70%.

Keywords: Java virtual machine, optimization, connected embedded systems, code-size
reduction
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Chapter 1

Introduction

The first section of this chapter explains the motivation for this research project. Then,
the history of the research collaboration between the Department of Computer Science,
University of California Irvine and the Institute for Technical Informatics, University of
Technology Graz is presented. Finally, this chapter gives an overview of the structure of
this master’s thesis.

1.1 Motivation

The usage of Java virtual machines has become very popular over the last decade. The
idea that a program does not have to be compiled into object code for every single platform
but can be executed by a virtual machine on the target device has started the triumphal
procession of Java virtual machines. The use of such virtual machines is not restricted
to personal computers and laptops, they are also very popular on mobile devices like
cellular phones and PDAs. A lot of research has been done in this field, but all other
implementations are limited by the completeness of the application and library code.

The goal of this research project is therefore to implement a client-server architecture
for mobile devices where all application and library code resides on a network host and
is transferred to the client only on demand. As mobile devices are inherently limited in
terms of local storage capacity, a Java virtual machine with only a small memory footprint
should be developed for the mobile device.

As bandwidth is a bottleneck for persistent connected embedded systems, a new way
of transferring information to the mobile device should be developed, where only runtime
critical information is extracted. All application and library code should be analyzed
on the server and only code, necessarily needed for execution by the virtual machine
should be requested from the server during runtime. Therefore, Java bytecode should be
manipulated and transferred to the client in form of pre-linked basic blocks, the smallest
possible logical collection of byte code instructions, as it is the smallest granularity of Java
bytecode.

9



CHAPTER 1. INTRODUCTION 10

1.2 Project History

The research collaboration between the Institute for Technical Informatics, University
of Technology Graz, Austria and the Department of Computer Science, University of
California Irvine, USA started in 2006.

Christian Steger of the University of Technology Graz and Andreas Gal of the Univer-
sity of California Irvine met at a conference in Germany in 2005. During their conversation,
Andreas Gal invited students from Graz over to California to join the research group of
the Secure Systems Laboratory of Michael Franz in Irvine. Gregor Wagner and two other
students from Graz took that opportunity and followed the invitation of Andreas Gal in
early 2006 and spent one semester in Irvine to do research for their master’s theses.

During this time, Gregor Wagner developed the first version of the SlimVM approach
[Wag07] which he presented in his paper SlimVM: Optimistic Partial Program Loading for
Connected Embedded Java Virtual Machines [WGF08] at the Principles and Practice of
Programming in Java conference in Modena, Italy in 2008.

Currently Gregor Wagner is involved in a PhD program at the University of California
Irvine and part of the research group of Michael Franz. When I started this project in
March 2008, he became the supervisor of this master’s thesis. With his guidance, a lot
of new ideas to improve, and based on the original approach, we started to develope a
new SlimVM from scratch. This time, JamVM is used for the prototype implementation,
with the difference that JamVM is a Java virtual machine which supports the full Java
specification. In contrast to the original SlimVM approach, we use the whole Java library
instead of the small subset of the KVM [Sun99b] library.

1.3 Structure of this Master’s Thesis

The remainder of this master’s thesis is structured as follows and consists of seven chapters
in which some chapters may depend on ideas or considerations of previous chapters. The
main focal point is on the Chapters 4 and 5 which explain the design and the prototype
implementation of this thesis.

Chapter 2 is meant to give an introduction and overview of the functionality of JamVM,
a Java virtual machine with a small memory footprint. This chapter also gives an
insight into the Java class file format and describes the bytecode format examplified
by a simple factorial program code snippet. Furthermore, this chapter describes the
Byte Code Engineering Library (BCEL) and the Java Native Interface.

Chapter 3 references the latest research proposals in terms of code size reduction, dead
code elimination, and bytecode compression for Java class files and gives an overview
of the state of the art.

Chapter 4 presents the principle approach and the design of the SlimVM approach.
This chapter includes details of the client-server architecture and the communication
between them. Furthermore, it includes some use cases of SlimVM and describes
the Data Flow in the Slim virtual machine.
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Chapter 5 gives an insight into the prototype implementation of SlimVM. Starting with
the description of the used development environment, this chapter presents detailed
information about the Slimcompiler, which compiles Java class files into the new
slim file format. Furthermore, this chapter describes the callback functions to the
server and it also presents detailed information about modified opcodes, describes
basic blocks and the Exceptionhandling.

Chapter 6 gives an overview of the benchmarks used for the evaluation. Furthermore,
the test environment is described and finally the evaluation of the taken measure-
ments of the SlimVM approach in terms of memory space savings, class file size
reduction and effect on performance is presented.

Chapter 7 presents the conclusions drawn from this master’s thesis and discusses future
work for the SlimVM approach.



Chapter 2

Background

This chapter gives an introduction and overview of the overall functionality of JamVM,
an insight into the Java class file format, and describes the bytecode format examplied by
a sample program. Furthermore, this chapter describes the Byte Code Engineering Library
BCEL and the Java Native Interface.

2.1 JamVM

JamVM [Lou04] is an open source Java Virtual Machine (JVM) written in C with a small
memory footprint. The size of the stripped executable on PowerPC is approximately
200KB and on Intel approximately 180KB. Unlike other lightweight JVMs (e.g. KVM
[Sun99b]) it supports the full Java specification (version 2 - blue book) [LY99] including
object finalization, the Java Native Interface (JNI) and the Reflection API. JamVM uses
the GNU Classpath Java class library [GNU99] and uses a mark-sweep garbage collector
(GC), which can be run either synchronously or asynchronously within its own thread.

As every other JVM, JamVM is a stack-based machine. For each thread (each new
Java program to be executed by the same virtual machine) a JVM stack, which stores
frames, is created. The use of a frame is to store data and partial results, as well as return
values for methods, dispatch exceptions and to perform dynamic linking. Each time a
method is invoked, a new frame (Figure 2.1) is created and pushed onto the frame stack.
When its method invocation completes whether normal or abrupt (it thows an uncaught
exception) the frame is destroyed. Only the frame of the current executing method is
active at any point.

As mentioned in Listing 2.1, each frame consists of an operand stack (ostack), an array
of local variables (lvars), also called the local variable table, as well as a reference to the
current method which references the current class and therefore the current constant pool.
Furthermore, a frame holds the current program counter (last pc) and a pointer to the
previous frame (prev).

12
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Listing 2.1: Internal representation of a frame in JamVM
1 typede f s t r u c t frame {
2 CodePntr l a s t p c ;
3 u i n t p t r t ∗ l v a r s ;
4 u i n t p t r t ∗ ostack ;
5 MethodBlock ∗mb;
6 s t r u c t frame ∗prev ;
7 } Frame ;

Operand stack
Constant pool

Growth

Array of local variables

0 1 2 3 4 ...

Figure 2.1: A frame in a Java Virtual Machine [Hag01], created for every invoked method,
which consists of the local variable table, the operand stack and a reference to the current
constant pool.

The local variable table is used to store the values of the local variables but is also
used to receive the parameters of the method. The parameters are stored first, beginning
at index 0. The array size for local variables depends on the number and size of local
variables and formal method parameters and is determined at compile time. As listed in
Listing 2.2, in JamVM, this information is stored in the variable max locals.

The operand stack is a last-in-first-out (LIFO) stack, whose size is also determined
at compile time. In JamVM, as listed in Listing 2.2, this value is stored in the variable
max stack. Certain bytecode instructions push values onto the operand stack whereas
other instructions take operands from the operand stack, manipulate them, and push the
result back onto the operand stack. Furthermore, the operand stack is used to receive
return values from methods.

As listed in Listing 2.2, a MethodBlock in JamVM holds a lot more information like
the method’s name, type and signature. The type u2 represents an unsigned two-byte
quantity. The method table index in line 20 indexes into the virtual method table and is
used to support the dynamic binding of Java. The Exception table in line 18 is used to
lookup, and to jump to the correct exception handling whenever an exception is arised.
Line 15 shows the pointer to the actual bytecode.
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Listing 2.2: Internal representation of a method in JamVM
1 typede f s t r u c t methodblock {
2 Class ∗ class ;
3 char ∗name ;
4 char ∗ type ;
5 char ∗ s i g n a t u r e ;
6 u2 a c c e s s f l a g s ;
7 u2 max stack ;
8 u2 max loca l s ;
9 u2 args count ;

10 u2 t h r o w t a b l e s i z e ;
11 u2 e x c e p t i o n t a b l e s i z e ;
12 u2 l i n e n o t a b l e s i z e ;
13 int n a t i v e e x t r a a r g ;
14 void ∗ n a t i v e i n v o k e r ;
15 void ∗ code ;
16 int c o d e s i z e ;
17 u2 ∗ throw tab le ;
18 ExceptionTableEntry ∗ e x c e p t i o n t a b l e ;
19 LineNoTableEntry ∗ l i n e n o t a b l e ;
20 int method tab le index ;
21 MethodAnnotationData ∗ annotat ions ;
22 } MethodBlock ;

Figure 2.2 gives an overview of the overall architecture of JamVM in which the Inter-
preter is the main core of the system because the Interpreter executes the actual bytecode.
The bytecode is a stream of instructions where an instruction may invoke a new method,
therefore a new frame is pushed onto the operand stack. The Interpreter calls the Linker
which checks whether the class of the method has been loaded so far or not. If the class
of the method is not loaded at this time, it is requested from the Class Loader and the
Linker links the class in the Java virtual machine.

The Class Loader is responsible for the dynamic loading and thereby creating the in-
ternal data structures for classes. The Linker is responsible for linking a class or interface,
which involves verifying and preparing that class or interface, its direct superclass, its
direct superinterfaces, and in case of an array type, its element type.

An instruction may also create a new object which is then stored on the heap. The
heap is the runtime data area from which memory for all class instances and arrays is
allocated. The GC is responsible for the storage of objects on the heap. An instruction
may also call a native function via the Java Native Interface.
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Exception handlingJava Native Interface 

calls <Exception thrown>

Heap

Garbage Collector

collects

Interpreter

Stack

accesses frames

executes
bytecodes

<Method invocation>

lookups classes

Class Loader

Classes
Methods

Bytecodes

loads classes

Linker

requests classes

accesses
objects

Figure 2.2: Architecture of JamVM: The main core of the system is the interpreter because
it interprets the actual bytecode instructions. A method invocation instruction causes the
Linker to lookup the requested class. If the class has not been loaded so far it is requested
from the Class Loader. Finally the method is invoked and a new frame is pushed onto the
Stack.

2.2 Class File Format

A Java compiler such as as javac translates a Java program into a hardware and operating
system independent binary format, typically (but not necessarily) stored in a file, known
as the Class File Format. Figure 2.3 illustrates the compilation of a Java source code file
to a Java class file. The format of class files is described in more detail in the Java Virtual
Machine Specification [LY99], and in [MD97]. Every class file defines the representation
of a class or interface and consists of a stream of 8-bit bytes where multibyte data items
are stored in big-endian order.
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public class 
HelloWorld {
    ...
        void hello() {
          ...
        }
}

javac

ca fe ba be 00
03 00 2d 00 21
07 00 18 07 00
1a 07 00 1b 07
00 1c 0a 00 03
00 09 0a 00 01
00 0a ...

Java Language Java Virtual Machine

HelloWorld.java HelloWorld.class

Figure 2.3: A Java source file is compiled by a compiler such as javac into the machine
independent Java class file format.

Listing 2.3 shows the Class File Format in detail where the types u1, u2, and u4
represent an unsigned one-, two-, or four-byte quantity. The * stands either for an internal
used structure for attributes, methods, fields, or the constantpool.

Listing 2.3: Java Class File Format
1 Class F i l e {
2 u4 magic :
3 u2 minor ver s i on ;
4 u2 major ve r s i on ;
5 u2 cons tant poo l count ;
6 ∗ cons tant poo l [ cons tant poo l count −1] ;
7 u2 a c c e s s f l a g s ;
8 u2 t h i s c l a s s ;
9 u2 s u p e r c l a s s ;

10 u2 i n t e r f a c e s c o u n t ;
11 u2 i n t e r f a c e s [ i n t e r f a c e s c o u n t ] ;
12 u2 f i e l d s c o u n t ;
13 ∗ f i e l d s [ f i e l d s c o u n t ] ;
14 u2 methods count ;
15 ∗ methods [ methods count ] ;
16 u2 a t t r i b u t e s c o u n t ;
17 ∗ a t t r i b u t e s [ a t t r i b u t e s c o u n t ] ;
18 }

The Java Class File of Listing 2.3 can be grouped into seven basic sections which are
listed and described below:

Header
The header of the class file starts with a magic number (0xCAFEBABE) to identify
a Java class file and is followed by the minor version and major version of the class
file format being used.
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Constant pool
The constant pool count indicates the number of entries in the following constant
pool table. Since constants in the constant pool table start at index 1, this count is
one greater than the actual number of entries. constant pool is the actual constant
pool table, which is an array of variable size constants containing strings, numbers
and references to methods and classes. The runtime constant pool is described in
more detail in Section 2.4.

Access rights
This section holds the access flags of the class encoded by a bitmask and indicates
whether a class is public, abstract, final, etc. Furthermore, this class holds the name
of the current class and super class holds the name of the super class.

Implemented interfaces
The interfaces count indicates the number of direct implemented superinterfaces of
the class which are stored in the following interfaces table.

Fields
The fields count indicates the number of fields in the fields table including class fields
and instance fields, declared by this class or interface type.

Methods
The methods count indicates the number of methods which gives a complete descrip-
tion of a method in this class or interface. If the method is native or abstract, the
instructions for the JVM implementing the method are also supplied.

Class attributes
The attributes count indicates the number of attributes which are stored in the fol-
lowing attributes table.

Since the Java virtual machine is designed to dynamically resolve symbolic references to
methods, classes and fields at run-time, all these references are encoded as string constants
stored in the constant pool. In fact, the constant pool contains the largest portion of an
average class file, approximately 60% [AP98], whereas the bytecode instructions themselves
just make up 12% of an average class file.

2.3 Byte Code Format

The Byte Code Format [LY99] is the specification of instructions that the Java virtual
machine executes. A Java virtual machine instruction is a one-byte opcode followed by
zero of more operands. Many instructions not have any operands and consist only of an
opcode. Not all of the possible 256 instructions are used. The instruction set currently
consists of 212 instructions, 44 are marked as reserved and may be used for optimizations
within the VM. The Java virtual machine instruction set can be grouped as follows:
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Load and Store Instructions
These instructions are used to load values from the local variables (e.g. iload) onto
the operand stack of a Java virtual machine frame and vice versa (e.g. istore).
Another important opcode of these category is ldc, which loads a constant from the
constant pool onto the operand stack.

Arithmetic Instructions
These instructions compute a result of two values on the operand stack and push
the result back on the oprand stack. Two main kinds of arithmetic instructions can
be differed: instructions operating on integer values and instructions operating on
floating-point values. For example, iadd, adds two integers. Since there is no direct
support for integer arithmetic for the types byte, short, char and boolean, these types
are handled as integers in the JVM.

Type Conversion Instructions
These instructions allow the conversion between Java virtual machine numeric types.
E.g. i2l, is a numeric conversion of an int to a long.

Object Creation and Manipulation
Even though class instances and arrays are objects, the JVM distinguishes between
these two types and uses different instructions for creation and manipulation. E.g.
new creates a new class instance whereas a new array is created with one of the fol-
lowing instructions: newarray, anewarray, multianewarray. To access fields of objects
the Java virtual machine uses getfield, putfield and respectively getstatic, putstatic
for static fields.

Operand Stack Management Instructions
Within the Java virtual machine there are some instructions that manipulate the
operand stack directly. E.g. pop, which pops a value of the operand stack or dup,
which duplicates the value on top of the operand stack.

Control Transfer Instructions
Branch instructions like ifgt or goto could cause the Java virtual machine to continue
execution with an instruction other than the one following the branch instruction.

Method Invocation and Return Instructions
There are four instructions that invoke a method within the Java virtual machine:
invokevirtual, which invokes an instance method of an object; invokeinterface, which
invokes a method that is implemented by an interface, invokespecial, which invokes
an instance method that requires special handling; invokestatic, which invokes a static
method.
The return instructions of methods are distinguished by their type. E.g. ireturn,
returns an integer.

Throwing Exceptions
An exception can be thrown either programmatically with the athrow instruction or
by Java virtual machine if an abnormal condition is detected.
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Except the lookupswitch and tableswitch instruction, which are used to implement
switch statements, all instructions of the Java virtual machine have a fixed length. But
since the number of cases in a switch statement may vary, the size of these instructions
may also vary.

2.4 The Runtime Constant Pool

The constant pool [LY99] is a table of constants in each class that contains values, ranging
from numeric constants known at compile time, to method, field and class references that
must be resolved at run time. In order to keep the bytecode short, typically all constants
are referenced by the bytecode using an index into the constant pool. Table 2.1 shows all
the possible types for constants within the constant pool:

Table 2.1: Java Reference Types for Constant Pool Entries

Constant Type
CONSTANT Empty
CONSTANT Utf8
CONSTANT Integer
CONSTANT Float
CONSTANT Long
CONSTANT Double
CONSTANT Class
CONSTANT String
CONSTANT Fieldref
CONSTANT Methodref
CONSTANT InterfaceMethodref
CONSTANT NameAndType

At some point during every running Java program, methods, fields, classes, etc. must
be resolved. The process of finding and replacing the symbolic reference with a direct ref-
erence is called resolution. Resolution in Java follows a simple schemata. The actual Java
bytecode indexes into the constant pool. The constant at this index is either a primitive
type like a CONSTANT Utf8 which holds for example a field-, method- or classname, or
it refers to other entries in the constant pool which holds further information in order to
resolve the correct field, method, class, etc. The connection between the possible reference
types is illustrated in Figure 2.4.
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Type

PrimitiveType ReferenceType

ClassOrInterface
TypeNullType ArrayType

ClassType InterfaceType

MethodType FieldType

Figure 2.4: Java Reference Types.

The left side of Figure 2.5 shows the class file format of the file Helloworld.class. The
right upper box extracts some parts of the constant pool of this class and the box below
examines the instructions of the translated program of Listing 2.4.

Listing 2.4: Java source code for a Hello World program
1 public class HelloWorld{
2 public stat ic void main ( St r ing args [ ] ) {
3 System . out . p r i n t l n ( ” Hel lo , world ” ) ;
4 }
5 }
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    Header

    Constant pool

    Access rights

    Implemented interfaces

    Fields

    Methods

    Class attributes

    getstatic        java.lang.System.out
    ldc                 "Hello, world"
    invokevirtual  java.io.PrintStream.println

    ConstantMethodRef
    "println"
    "(Ljava/lang/String;)V"
    "java/io/PrintStream"

    ConstantFieldRef
    "aVariable"
    "[Ljava/lang/Object:"
    "HelloWorld"

    ConstantClass
    "java/io/PrintStream"

    ConstantString
    "Hello, world"

HelloWorld.class

Figure 2.5: Java class file format [Dah01].

The first instruction loads the contents of the field out of the class java.lang.System,
which is an instance of the class java.io.PrintStream, onto the operand stack. Using the
ldc instruction, a reference of the constant string “Hello, world“ is pushed on the operand
stack. The invokevirtual instruction finally invokes the instance method println which takes
both values as parameters. As indicated, the instruction invokevirtual refers to a MethodRef
constant, which contains information about the method such as the name, the signature
and to which class the method belongs. In fact, the MethodRef constant itself just refers
to other entries in the constant pool holding the real data, e.g. it refers to a ConstantClass
which contains a symbolic reference to the class java.io.PrintStream.
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2.5 Byte Code Engineering Library

The Byte Code Engineering Library (BCEL) [Dah01] is a tool which provides a simple API
for decompressing, modifying, and recomposing binary Java class files. BCEL exposes all
of the binary components and data structures declared in the JVM specification [LY99] as
objects. These objects may be used to modify and even to generate new bytecode. Figure
2.6 illustrates the UML diagramm for the BCEL API.

Unknown

LocalVariableTable

LineNumberTableDeprecated ExceptionTable

getCode()

max_stack : int
max_locals : int

exception_handlers

Code

SourceFile

SyntheticInnerClassesConstantValue
Attribute

Field Method

parse()

ClassParser
getInterfaceNames()
getSuperclassName()

JavaClass

isPublic()

AccessFlags

getConstant()

ConstantPool

getName()

FieldOrMethod

<<creates>>

*

1

*

1

*

1

*

1

<<Field attribute>>

<<Method attribute>> <<Method attribute>> <<Method attribute>> <<Code attribute>>

<<Code attribute>>

<<Class attribute>> <<Class attribute>>

<<Class attribute>>

1

1

Figure 2.6: UML diagramm for the BCEL API [Dah01].
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The BCEL API mainly consists of three parts:

1. A package of classes which expose all elements of class files like fields, methods, etc.
This package may be used to read and write class files from or to a file but is not
intended for bytecode modifications.

2. A package to dynamically generate or modify JavaClass objects. For example, this
package is used to insert analysis code or to strip unnecessary information from class
files. Furthermore, it is used to implement the code generator back-end of a Java
compiler.

3. Various utilities like a converter from class files to the Jasmin assembly language
[MD97], a class file viewer and a tool to convert class files into HTML.

The BCEL API in its general purpose is a tool for bytecode engineering which helps
developers implementing analysis tools or bytecode transformations. The BCEL library
has been proved to be useful in several diverse applications and is not restricted to a
specific kind of application area.

2.6 Java Class Library

The Java Class Library [Wik08] is a set of pre-written classes which can be dynamically
loaded by any Java application during runtime. Like other standard code libraries, the
Java Class Library provides the programmer a well known set of functions to perform
common tasks, such as maintaining lists for example. In addition, class libraries provide an
abstract interface to tasks that normally depend heavily on the hardware of the operating
system (OS), such as file and network access. Currently, only some different Java class
libraries are available, like those from Sun or IBM’s Virtual Machines or OpenJDK.

JamVM uses GNU Classpath [GNU99] and does not work with any other class library.
GNU classpath is part of the Free Software Foundation’s GNU project and creates a free
software implementation of the standard class library for the Java programming language.
The aim of the GNU classpath project was to give computer users the possibility to use
Java programs without giving up the freedoms which the FSM (free software movement)
works to secure. GNU classpath consists of 7258 classes with a total size of 14.89 MB.

2.7 Java Native Interface

The Java Native Interface (JNI) [Lia99] is a native programming interface that allows Java
code that runs inside the Java virtual machine to interoperate with applications (hardware
and operating system specific programs) and libraries written in other languages, such as
C, C++, and assembly. Figure 2.7 illustrates the role of the Java Native Interface:
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Host environment

  Java application
  and library

  Java virtual machine
  implementation

  Native application
  and libraryJNI

Figure 2.7: Role of the Java Native Interface [Lia99].

The following examples illustrate when Java native methods are needed:

• Platform-dependent features that are needed by the application and that are not
supported in the standard Java class library.

• Already existing libraries written in another language should be accessible to the
Java code.

• A small portion of time critical code is implemented in a lower-level language such
as assembly.

The JNI is a powerful feature and designed to handle situations where Java applications
need to be combined with native code such as when the standard Java class library does not
support platform-specific features or program library. A lot of the standard Java library
classes depend on the JNI to provide functionality such as I/O file reading. Since JNI is
included in the standard library, this performance- and platform-sensitive API allows all
applications written in Java to access this functionality in a safe and platform-independent
manner. By programming through the JNI, native methods can be used to:

• Create, inspect, and update Java objects.

• Call Java methods.

• Catch and throw exceptions.

• Load classes and obtain class information.

• Perform runtime type checking.

In JamVM, all native functions are implemented in a separate .c file. Every time the
JVM invokes the function, it passes the JNIEnv pointer, a jobject pointer, and any Java
arguments declared by the Java method. A JNI function to get the length of a string may
look like this:
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Listing 2.5: JNI method to get the length of string
1 j s i z e Jam GetStringLength (JNIEnv ∗env , j s t r i n g s t r i n g ) {
2 return getStr ingLen ( ( Object ∗) s t r i n g ) ;
3 }

The env pointer is a structure which includes all of the functions necessary to interact
with the Java virtual machine and to work with Java objects. JNI functions can convert
native arrays to/from Java array, are able to convert native strings to/from Java strings,
are able to instantiate objects, throw exceptions, etc. Basically, everything Java code can
do can be done by using the JNIEnv.

2.8 Code Example

The example program in Listing 2.6 calculates and prints the factorial of the static inte-
ger n. Even though this is not the best way of calculating the factorial of a number, this
example serves its demonstrating purpose. The println function may raise an Exception
and therefore the critical area of code is encapsulated in a try-catch block.

Listing 2.6: Java source code for a factorial program
1 public class Faculty {
2 public stat ic int n = 4 ;
3

4 public stat ic void f a c ( ){
5 int f = 1 ;
6 int i = n ;
7 while ( i > 0){
8 f ∗= i ;
9 i−−;

10 }
11 try{
12 System . out . p r i n t l n ( f ) ;
13 }
14 catch ( Exception e ){ System . e r r . p r i n t l n ( e ) ; }
15 }
16

17 public stat ic void main ( St r ing [ ] argv ){
18 f a c ( ) ;
19 }
20 }

Java bytecode differs between two constructors, a static constructor <clinit> for initial-
izing all static fields, which is called only once for each class, and an instance constructor
<init> which is called separately for every instance of a class. Since the factorial example
only has a static field, only the static constructor is printed below, because the instance
constructor is negligible for the example. In Listing 2.7 the instruction iconst 4 loads the
value 4 on the stack and putstatic stores this value into a static field.
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Listing 2.7: Bytecode of the static constructor <clinit> of a Factorial program
1 0 : i c o n s t 4
2 1 : p u t s t a t i c #10; / F i e ld n : I
3 4 : return

The static function fac() called by the main function of this program is printed in
Listing 2.8. Value 1, loaded by the instruction iconst 1 and value 4 of the before initialized
static field are stored in slots 0 and 1 in the local variable table.

The instruction goto jumps to offset 16 which is for the ease of reading displayed as
an absolute address even though branch instructions are actually relative. The value 4
of slot 1 is loaded onto the stack again. Because 4 is greater than 0, the ifgt instruction
jumps to address 9 which loads the two values of slot 0 and 1 which are then mulitplied by
imul. The result is pushed back on the stack and stored in slot 0 of the local variables. iinc
decrements the value stored in slot 1 and iload 1 loads this value on the stack again. This
is done until the value of slot 1 is 0. This part of the bytecode represents the while-loop
of the Java programming language.

The instructions between address 20 and 27 are used to print the result. If no exception
is thrown the instruction goto jumps to offset 38 and the method returns. If an exception
is thrown, a lookup in the Exception table is necessary where the target indicates the new
jump address, in this case 30 where the exception handler starts.

Listing 2.8: Bytecode of the method fac() of a Factorial program
1 0 : i c o n s t 1
2 1 : i s t o r e 0
3 2 : g e t s t a t i c #10; / F i e ld n : I
4 5 : i s t o r e 1
5 6 : goto 16
6 9 : i l o a d 0
7 10 : i l o a d 1
8 11 : imul
9 12 : i s t o r e 0

10 13 : i i n c 1 , −1
11 16 : i l o a d 1
12 17 : i f g t 9
13 20 : g e t s t a t i c #20; / F i e ld java / lang /System . out : Ljava / i o / PrintStream ;
14 23 : i l o a d 0
15 24 : i n v o k e v i r t u a l #26; /Method java / i o / PrintStream . p r i n t l n : ( I )V
16 27 : goto 38
17 30 : a s t o r e 2
18 31 : g e t s t a t i c #32; / F i e ld java / lang /System . e r r : Ljava / i o / PrintStream ;
19 34 : a load 2
20 35 : i n v o k e v i r t u a l #35; /Method java / i o / PrintStream . p r i n t l n :
21 ( Ljava / lang / Object ; )V
22 38 : return
23

24 Exception t a b l e :
25 from to t a r g e t type
26 20 27 30 Class java / lang / Exception



Chapter 3

Related Work

Many researchers have identified the importance of code size reduction, dead code elimina-
tion and bytecode compression for ensuring Java’s success on embedded systems. Therefore
this chapter references the latest research proposals in this field to give an overview of the
state of the art, including the first developed approach SlimVM.

3.1 JAR Format

The standard means of packaging Java class files for distribution and storage is Sun’s JAR
(Java ARchive) [Sun99a] file format. The JAR format is based on the well known zip
[PKW89] compression mechanism to aggregate many Java class files as a single unit. In
fact, it is possible to extract members of JAR files using a zip decoder. JAR also allows
other data types to be stored among with the class files.

JAR reduces the size of Java class files by almost 50% and can be executed by any
Java virtual machine. Since Java 1.5.0 the compression utility Pack200 [Sun08c] is included
which was designed for compressing JARs and works efficiently on Java class files. Using
Pack200 compression the size of a JAR file can be reduced by about 60%.

3.2 JAZZ: An Efficient Compressed Format for Java Archive
Files

Bradley et al. present a format called Jazz [BHV98]. Similar to JAR, Jazz [BHV98]
bundles a number of class files together and compresses them. Bradley et al. eliminate
redundant constantpool entries and combine the constantpools of all compressed classes to
one unified constantpool within the Jazz archive. In this way, any constant string will only
appear once, no matter how many classes make use of it. Also method names, signatures,
integer constants only appear once. Huffman [NG96] codes are used for all indices into
the unified constantpool as it is an optimal method of assigning variable length codes to
symbols.

To achieve a good compression, Bradley et al. sort all strings in all the classes, con-
catenate them, compress them using zip and store them in one part of the Jazz file.

27
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Furthermore the length of strings has to be stored. To do this in an efficient way, all
strings are sorted by length and delta coding (a delta code is the difference between one
value and the next) is used to encode the length of the strings. As the strings are sorted
by length, the values will normally be small and therefore they will need fewer bits to
store. In fact, the presented Jazz format reduces the data to 25% of the original size.

3.3 Compressing Java Class Files

Pugh presents the wire-code format [Pug99], a custom compressed format for collections
of Java class files. A compressor transforms the JAR file into the wire format using three
main approaches to create smaller files that contain the same information as a JAR file:

1. Transmission of redundant information by sharing information across class files. As
classnames are encoded as a package name and a simple class name, Pugh changed
the representation so that all classes from the same package share the package name
and therefore it only has to be stored once (e.g. java.lang only occurs once). Also
classes from different packages can share the same simple class name.

2. Types of methods and fields are not encoded as strings. Instead, Pugh encodes
method types as an array of classes containing the return and argument types. A
field type is just a class and primitive types and array types are encoded as special
class references which are converted back when decompressed.

3. Elimination of generic attributes. Pugh sets additional flags in the access flags
instead, which indicate whether specific attributes apply.

A decompressor has to be present on the target machine which needs 36 KB in JAR
format. As the wire format is a sequential format, all of the class files must be decom-
pressed in sequence. Once decompressed they can be transformed back to a convential
JAR file or separate classfiles. The wire format is typically 50% to 80% smaller than the
original JAR file using the compression algorithm gzip [Deu96].

3.4 Compact Java Binaries for Embedded Systems

Rayside et al. present an effective solution for the conflicting requirements of size reduction
and execution performance called compact Java Binaries [RMH99]. Regular class files can
be converted to the new format and back easily and quickly, but executing the new format
requires either a customized class loader or a slightly modified virtual machine.

Rayside et al. identified the constantpool and the code attribute of the class file as
the two most important factors to reduce the size of the file. In order to reduce the size
of the constantpool Rayside et al. explicitly represent the package tree structure and the
hierarchical organization of types in Java. Due to this alteration it is possible to replace
string references to types with indices to the explicit representation. Furthermore Rayside
et al. separate the opcodes from the operands and apply three different techniques in
order to reduce the size of the code attribute:
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• The first approach uses the Huffman algorithm in order to reduce the number of bits
required to represent the most frequent opcodes.

• The second approach is based on the observation that some opcodes often appear in
pairs. Rayside et al. associate each pair of opcodes with a unique prefix code using
the Huffman algorithm again.

• The third approach is an attempt to exploit existing code patterns generated by
Java compilers such as javac. A Markov state model helps to represent each opcode
as a unique state. The first state can then represent a sequence of opcodes and a
sequence of state transitions. This representation helps Rayside et al. to identify
distinct groups of opcodes that a likely to be followed by opcodes of another group.
Again, the Huffman algorithm is used to determine the prefix codes that represent
the possible transitions between all the states.

Rayside et al. modified the constantpool and the code attribute of class files in a way that
their evaluation show a typical size reduction of 25% for class files and 50% for JAR files.

3.5 Java Bytecode Compression for Low-End Embedded
Systems

Clausen et al. present in their work Java Bytecode Compression for Low-End Embedded
Systems [CSCM00] that factorization of common Java bytecode instructions can reduce
the memory footprint, on average, to 85% of its original size, with a minimal time penalty.
Although Clausen et al. preserve Java compatibility, their solution requires some modifi-
cations in a JVM used in a low-end embedded system.

As the standard Java class file format includes unnecessary information not needed to
be present in a low-end embedded system, it is common to use its own internal space-
efficient representation. Clausen et al. use the JavaCard [Sun08a] technology. A Java
program is transferred to JavaCard systems in units of packages. A package is converted
into a single CAP (converted applet) file and an export file which describes the package
interface. Other export files which describe other packages that are used by the classes in
the package allow all the name information to be stored in export files, so that two byte
tokens are the only representation of names in the CAP file. Once the CAP file is trans-
ferred onto the JavaCard device, it can be converted into whatever internal representation
is used for execution.

Furthermore, Clausen et al. use code factorization to eliminate code redundancy.
Their proposal is to extend the virtual machine to read new instruction definitions from
the CAP file. These macro instructions replace common instruction sequences in the code
and can be stored with little memory overhead in the run-time system. Conceptually,
recurring sequences of operations are abstracted by factorizing them into single units. Each
bytecode instruction sequence is called a pattern. With this approach, the only limitation
of new instructions is the number of unused instructions in the standart instruction set.
Factorization for a given program is a two step process:
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• First, repetitive instructions have to be identified as patterns. All possible combi-
nations of instruction sequences occurring in the program are generated in order to
find the best set of patterns to factorize the program where identical sequences are
treated as a single occurrence group. The virtual machine must keep track of the
current package in order to reference constants correctly as in the CAP file each
package has its own constantpool. Furthermore, Clausen et al. consider the instruc-
tions tableswitch, lookupswitch, jsr, and ret as unfactorizable and therefore they are
removed from a pattern by splitting the pattern into two new patterns, and splitting
the occurence group accordingly. Similarly, whenever an outgoing branch leaves a
pattern, the branching instruction is removed from the pattern, creating two new
patterns.

• Secondly, the bytecode is factorized and new instructions are generated on the fly.
Clausen et al. generate the macros greedily by selecting the occurrence group that
gives the most savings and keep on doing that either they run out of unused instruc-
tion codes or occurrence groups that save space. Each occurrence is replaced by a
macro instruction and any other occurrence that contained the replaced occurrence
needs to be updated in order to reflect this change.

3.6 Generation of Fast Interpreters for Huffmann
Compressed Bytecode

Latendresse and Feeley [LF03] use canonical Huffman codes to create an instruction set for
a customized VM and present an implementation of that machine that directly executes
this compact code. Their approach creates either new instructions in order to replace a
sequence of instructions, or a basic instruction with a new format for the operands.

First, they build a dictionary of (possibly overlapping) repetitive sequences. Secondly,
they create a dictionary of formats to encode all basic instructions using as few bits as
possible. Third, a greedy algorithm considers the maximum space saving and selects either
a sequence of instructions or a new format until no space gain can be obtained. Further-
more, the greedy algorithm considers the opcode length, the new formats and the space
of the decoder. They encode the opcodes using static frequencies of the opcodes from a
sample of programs to generate canonical Huffman codes with variable lengths. Canonical
Huffmann codes are similar to the original bottom up method, with the difference that the
numerical values of the codes of a given length form a consecutive sequence. Therefore,
they have a compact representation of the bijection between the codes and the encoded
object.

In order to increase the speed for decoding, Latendresse and Feeley use a table which
contains branching addresses at which either decoding continues or the virtual instruction
is decoded. They distinguish between three different look-ups:

1. The opcode is recognized and a direct jump to the implementation of the virtual
instruction is done.



CHAPTER 3. RELATED WORK 31

2. The opcode is not recognized but its length is known. In this case the length of the
opcode is used to compute its index by equation and a jump to the implementation
of the virtual instruction is done.

3. The opcode is not recognized and its length is unknown. In this case, the following
bits are used to continue decoding using another look-up. Therefore the decoder has
a tree structure where every interior node is case 3.

Case 1 and 2 are leaf nodes. Each type 3 node requires a vector of addresses of its own,
whereas type 2 nodes share the same vector. They use the basic parameters, the (static or
dynamic) frequencies of the opcodes and a given space constraint to generate the fastest
decoder. A branch and bound algorithm is used which searches from the fastest to the
slowest decoders and stops when the space constraints are met.

Latendresse and Feeley present a solution where the compression factors highly depend
on the original bytecode and the training sample, but typically vary from 30% to 60%.

3.7 A Java Bytecode Optimizer using side code analysis

Clausen presents Cream [Cla97], a Java bytecode optimizer which performs dead-code
elimination, loop-invariant removal as well as side-effect analysis. Cream consists of nine
phases where the first two phases are interprocedural, while the remaining phases are
performed for one method at a time:

Class graph construction
In order to make it possible to analyze interface and virtual methods a class graph
is constructed which contains all classes and superclasses that may be used by the
program. Classes which have instances allocated during runtime are marked as such.

Side-effect analysis
Side-effect analysis for virtual methods is done before the main analysis is started.
Methods not reached by the main() method are only analyzed on demand.

Control-flow graph construction
Instructions are divided into blocks, where the control flow may change. The control
flow is then represented as edges between these blocks. Furthermore, instructions
that may throw an exception also end a block. During this phase Clausen also
separates the control flow from the order of the instructions to make it easier to
move instructions around.

Stack depth inference
In order to find out how high the stack is at any given point, Clausen traverses the
control-flow graph and identifies stack variables by their offset from the bottom of
the stack, not by their position relative to the stack pointer.

Use-def analysis
Clausen builds use-def chains for local variables and stack variables using a standard
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analysis with kill-sets and gen-sets with the only difference that stack variables are
always considered killed when used.

Cycle detection and dominance graph construction
Clausen uses a cycle detector in order to build a dominance graph before he does
the loop invariant elimination.

Dead code marking
Clausen uses a dead-code marker which considers all impure instructions, return
instructions and instructions that may change the control flow to be live. Instruc-
tions not live or used or used to construct anything live will be eliminated in the
transformation phase.

Loop-invariant detection
Instructions which are invariant during a loop are detected in this phase. If the loop
itself is found side-effect free, this may also include field accesses and invocations of
methods without side-effects.

Code transformations
In this final step, the possible transformations are performed. Clausen mentioned
that the challenge is to keep the stack consistent. For example, when the result of
a method invocation is no longer used, because the use turned out to be dead code,
but the result must still be popped off the stack.

Clausen presents an optimizer for Java bytecode using inter-procedural side-effect analysis
with a possible performance improvement of up to 25%.

3.8 Practical Extraction Techniques for Java

In order to reduce the size of an application for embedded Systems, Tip et al. present a
number of extraction techniques [TSL+02] such as the removal of unreachable methods
and redundant fields, inlining of method calls and the transformation of the class hierarchy.
They implement their techniques in Jax, an application extractor in Java. Jax reads the
Java class files of the original application and constructs an in-memory representation of
those files. Only classes that contain the application’s entry points and classes that are
directly or indirectly referenced from those classes are loaded by Jax.

Removal of Redundant Class File Attributes
Unnecessary class file attributes like the local variable name tables and line number
tables are discarded during loading.

Removal of Unreachable Methods
During the execution of a program only a subset of methods in the loaded classes
is required by an application. There are many reasons why unreachable methods
arise. A well known example is that applications often use class-libraries that are
developed somewhere else. In some cases methods cannot be removed for syntactic
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reasons, in these cases Jax still removes the body of the method and replace it with
a return statement.

Redundant Field Elimination
Fields only accessed from unreachable methods can be removed from the application.
Furthermore, as Tip et al. presented in 1998 [ST98], fields only written to, but never
read, can also be removed from the application because those fields cannot affect the
program’s behavior.

Class Hierarchy Transformations
Jax eliminates entire classes and merges adjacent classes in the hierarchy.

Name Compression
Classes, methods and fields are currently renamed in Jax. Tip and Sweeney use
more ambitious naming schemes and use the same name for methods with different
signatures.

Performance Optimizations
Even though the primary goal was to reduce archive size, Tip and Sweeney optimized
the performance by inlining non-overriden methods in cases where this does not
increase the size of the application. Moreover, they replaced an invokevirtual with
an invokespecial where a virtual dispatch has only one potential target.

Constant Pool Compression
After the transformations described above have been performed, the in-memory
representation of Jax creates new class files. These class files are written out again
and a new constantpool is created from scratch, where only classes, methods, fields
and constants actually referred are added.

Tip and Sweeney reduce the size of class file archives, on average, to 37.5% of their original
size.

3.9 Generic Adaptive Syntax-Directed Compression for
Mobile Code

Stork et al. present an approach [SHF00] for mobile code compression operating on ab-
stract syntax trees (AST) which can be parameterized by abstract grammars (AG). This
makes their approach applicable for any source language without further language-specific
modifications. Stork et al. use novel statical approaches to compress the AST of a pro-
gram. They achieve a more compact encoding by using domain knowledge about the
underlying language since the AST is composed according to a given AG.

First, an AST is poduced from the source code during the parsing process. In order to
store and transport ASTs they need to be serialized. Stork et al. do this by generating the
ASTs pre-order representation. The AG can be effective on the actual tree representation
and much information in the pre-order encoding is redundant. In order to use as few bits
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as possible for encoding, Stork et al. use an arithmetic coder [WNC87] as it is the best
means to encode a number of choices if each alternative has a certain probability.

In the prototype implementation Stork et al. use the Barat [BS98] framework for
parsing and after decompressing the binary file, the prototype interfaces directly with
GCC as code-generating backend. With this approach Stork et al. reduce the size of Java
classes (packages) by 5-50%.

3.10 Revisiting Java Bytecode Compression for Embedded
and Mobile Computing Environments

Saougkas et al. [SMBZ07] customize agglomerative clustering (AC) toward the identifica-
tion of parameterized and nonparameterized patterns in order to reduce the size of Java
bytecode. This hierarchical pattern discovery technique helps them to discover patterns
of arbitrary length containing a variable number of wildcards. Saougkas et al. present
the advantages and limitations of the afore mentioned technique using MIDP [Sun08b],
a standard Java environment that supports application development for mobile devices.
Their overall compression process consists of four steps:

1. They segment the Java bytecode into basic blocks.

2. They use a pattern discovery technique to identify possible patterns in the basic
blocks of the bytecode.

3. The resulted patterns are collected and possible combinations of these patterns are
examined. Furthermore, the bytecode size reduction for each pattern combination
is calculated.

4. Finally, the pattern combination which gives the best bytecode size reduction is
selected and used for the generation of the compressed code.

Nonparameterized Pattern Discovery
The nonparameterized pattern discovery is in fact a simple string search problem.
The first step of the code compression process identifies a set of basic blocks of the
Java bytecode. Then, the pattern discovery tries to find common substrings that
are repeated in these sequences and the subset giving the best bytecode reduction
is stored in a dictionary.

Parameterized Pattern Discovery
The parameterized discovery technique is an extension of the nonparameterized tech-
nique and starts from the point where the different collections of substrings of se-
quences have already been identified.

Saougkas et al. use AC, an hierarchical approach relying on the bottom-up generation of
a treelike structure of clusters. Starting with a set of clusters (leaf nodes) the algorithm
searches at each next step the current set of clusters to identify the two most similar ones
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and merges them into a new cluster. The algorithm terminates when no pair of nodes is
allowed to be further merged.

Saougkas et al. developed a pattern discovery method that reduces the bytecode size
of a MIDP package, on average, by about 15% to 30%.

3.11 Slim Binaries

Franz and Kistler present slim binaries [FK97], a compact platform-independet program
representation, which is designed to be translated into binary code by an optimized JIT
(just-in-time) compiler.

Their implementation generates high quality native code on-the-fly which is fast enough
that it can compete with the loading of the compiled code from an usual binary. Slim
binaries not only solve the problem of compatibility between different architectures, they
also allow to fine-tune the object code towards the specific processor and operating system
version that it will run on.

Slim binaries encode the abstract syntax tree of a program and can be verified easily,
because the code can be restricted to valid syntax trees of the programming language.
Thus, expensive bytecode verication can be avoided.

Based on the fact that different parts of a program are often similar to each other (e.g.
procedures in typical programs are often called again and again with almost identical pa-
rameter lists), these similarities are exploited by using an predictive compression algorithm
which allows the encoding of recurrent subexpressions in a program space efficiently. Due
to the structured representation which can include information needed for optimizations,
the compilation overhead is negligible, and the generated binary code is as efficient as
that generated by an ordinary compiler. This approach can reduce the size of a complete
application by a factor of three.

3.12 Code Compression

Ernst et al. present a compressed executable called BRISC [EEF+97] (Byte coded RISC),
an interpretable VM code with about the same size as an non-interpretable gzipped x86
program.

They assume transmission and memory as the two most important criteria for the
execution of a program. Unlike slim binaries which compresses full executables, they
compress only code segments.

The compressor starts by adding the base instruction set, which currently consists
of 224 instruction patterns, to a dictionary of frequently occurred instruction patterns.
Furthermore the compressor scans the input program over and over, to find and to add
useful instructions to the dictionary and to calculate their program size reduction and their
cost in decompressor memory. They calculate the program size reduction by calculating
the reduction in compressed program bytes that would occur if the candidate instruction
pattern were added to the dictionary minus the number of bytes needed to represent the
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instruction pattern in the dictionary. For the code generation or interpretation the BRISC
decompressor uses a table of native instruction sequences.

To keep track of the candidate instructions the compressor maintains a heap. After
each pass over the input program, the compressor adds the best candidates to the dic-
tionary and removes them from the heap. After that, the compressor modifies the input
program to reflect the newly available instruction patterns. The compressor maintains a
table that maps each base instruction pattern to a list of all input program instructions
that matches that pattern to avoid undue overhead. Similarly, the compressor also main-
tains a hash table of all previously generated instruction patterns so that generating of
already existing candidates can be avoided.

Once a dictionary is created, the dictionary followed by the modified input program
which has been compressed during the construction of the dictionary are written to the
BRISC file. As the results show, BRISC is a good mobile program representation choice
which is competitive with gzip in code size.

3.13 SlimVM: Optimistic Partial Program Loading for
Connected Embedded Java Virtual Machines

Wagner et al. present a zero footprint paradigm for connected embedded devices [Wag07]
[WGF08], where all code resides on a remote network host and is provided only on-demand.
First, all application and library class files are loaded by the Slimanalyzer, a tool based on
BCEL [Dah01], which analyzes all application and library code and generates an optimistic
subset of class files which are likely needed by the client. During this phase, Wagner et
al. identify all required information of the application and library, extracts them and
compresses this subset.

Pre-linked bytecode is transferred to the mobile device and if their heuristic fails and
code marked as unlikely executed is needed during execution, the client sends a code reload
request to the server before continuing execution. They consider three different levels of
granularity:

Class Level
When the client requests a class file, only the basic information like static and
instance variable size, static and instance constructor and the remaining strings in
the new constantpool are transferred.

Method Level
They present two different approaches for their method level, an optimistic and a
pessimistic one. In the pessimistic approach, every method referenced by an
invoke is shipped to the mobile device during basic class loading. In the optimistic
approach all methods except of init and clinit have to be requested during runtime.
This is effective for classes only requested because of a static field.

Basic-Block Level
Wagner et al. change the bytecode representation by removing basic blocks from
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methods. Their analysis tries to identify those parts of methods that are going to be
executed. Code less likely to be executed, like exception code, remains on the host
network and is only shipped on demand. In order to do so, all instructions of a basic
block are replaced by a placeholder instruction which references to the corresponding
basic block with a numeric identifier. Each removed basic block is replaced by an
instruction called block. Whenever such an instruction is reached during execution,
the corresponding basic block will be requested from the server.

In order to reduce the size of the constantpool, they change the representation of
references from strings to numbers. The same is done for names of methods, fields, classes
and types. As a result, they drop the whole constantpool with the exception of strings
which cannot be replaced, like “Hello World!“ which should appear on the screen. These
strings are now kept in a separate string stream.

For their prototype SlimVM implementation they use the K virtual machine[Sun99b]
on the client and in order to execute the new format, they modified these VM. Opcodes,
formerly followed by an operand indexing in the constantpool are now followed by the
class or method identifier number and therefore no further lookup into the constantpool
is needed. Furthermore, they use a lookup table for each class which stores the trans-
ferred status and the corresponding offset for each method. Each field instruction can
be resolved to an absolute offset within the corresponding object and no further time-
consuming lookup is necessary.

The results of Wagner et al. show that code-size reduction, pre-linking and on-demand
provision reduce the size of Java applications for connected embedded mobile devices by
up to 95%. Furthermore, their approach decreases the overall memory consumption of the
VM by as much as 75%.



Chapter 4

Design

This chapter presents the principle approach and the design of SlimVM. It describes the
customized and optimized Java virtual machine on the client, includes details of the client-
server architecture and the communication between them. Furthermore, this chapter in-
cludes use case diagrams for the SlimVM approach and a data flow diagram.

4.1 The Principle Approach

The principle approach of SlimVM is the idea that a Java virtual machine can be separated
into two main parts. One part, which is in charge of analyzing and pre-linking the whole
program and the other part, which has just the function to execute the modified bytecode
instructions.

As illustrated in Figure 4.1, firstly a Java program has to be compiled into java class
files which are then read and analyzed by the Byte Code Engineering Library BCEL.
BCEL maps all class and method names against numerical identifiers in order to keep
the size of the new slim file format small and in order to support pre-linking. Pre-linking
means that the resolution of all bytecode instructions which refer into the runtime constant
pool is done on the server prior to execution on the client and replaced by the appropriate
numerical identifier in case of a method invocation. That means that no constant pool has
to be transferred in the new slim file format, but that also means that a lot of instructions
have to be modified which are described in detail in Section 5.5.1.

The slimcompiler compiles every Java class file into the new slim file format which
does not include any actual bytecodes at all. The bytecodes are kept separately in form
of basic blocks as it is the smallest granularity of Java bytecode.

The two parts of the Java virtual machine are separated on a server and on a client.
All program code remains on the server and is requested by the Java virtual machine on
the client during runtime. Since class file information and bytecodes are seperated it is
possible to transfer just the information necessarily needed for execution of the program.
Whenever a new class is needed, it is requested from the server and whenever a method of
that class is invoked, only the bytecode needed for execution is requested from the server.

38
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SlimVM

compile

Slimcompiler pre-link
slimcompile

public class 
HelloWorld {
    ...
        void hello() {
          ...
        }
}

ca fe ba be 00
03 00 2d 00 21
07 00 18 07 00
1a 07 00 1b 07
00 1c 0a 00 03
00 09 0a 00 01
00 0a ...

BCEL

load

Application.java

Application.class

01 02 f3 00 01 00 00 00 
05 28 4c 3b 29 4c 00 00 
29 56 00 00 01 00 03 ...

Application.slimclass

00 00 08 00 40 00 01 00 
00 00 04 31 ad 4b 55 34 

Application
bytecodes

Network

load request

Figure 4.1: All java source files have to be compiled into java class files which are then
read by BCEL. The slimcompiler compiles every class file into a new slim file format which
does not contain any actual bytecode instructions at all. All bytecode instructions are kept
separately and can be requested individually in form of basic blocks by the Java virtual
machine on the client.
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In order to execute a program it is not necessarily needed to have the whole program
code to be present on the mobile device. Figure 4.2 illustrates the execution flow of
Listing 4.1 and shows that Code Block 1 and Code Block 2 are never executed by that
program.

end

start

true

true

true

false

Code
Block 3

if else

if else

while

Code
Block 1

Code
Block 2

false

false

Figure 4.2: This Figure shows the execution flow of a method. As illustrated, only a subset
of code is actually needed to execute a method. Code Block 1 and Code Block 2 are not
needed for execution of that method.
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Listing 4.1: Example to show the execution flow of a method
1 public void f oo ( ){
2 int i = 0 ;
3 i f ( i < 10){
4 i f ( i < 5){
5 while ( i < 5){
6 Code Block 1
7 }
8 } else {
9 Code Block 2

10 }
11 } else {
12 Code Block 3
13 }
14 }

In order to keep the memory footprint small on the mobile device, it is crucial to send
only bytecodes necessarily needed for execution a program. For example, Code Block 1
and Code Block 2 could be enormous in size including hundreds of hundreds of instructions
but are never executed and therefore unnecessary for the execution of that program.

4.2 System Architecture

The main idea for the development of SlimVM is the reduction of the code and memory
footprint of a Java virtual machine on an persistently connected embedded mobile device.
All code (including library and application code) of a Java program is analyzed prior the
execution on the mobile device. During this step, all classes referenced by the main()
method are read and analyzed recursively. That means, that every Java class file which
is invoked by an instruction in the currently analyzed file is also going to be read and
analyzed. The information collected for field, method, and class resolution is evaluated
and compiled into a slim class file format developed for this approach.

As bandwidth is always a bottleneck for persistently connected embedded mobile de-
vices, this new invented class file format holds information needed for resolution within
the runtime constant pool not based on strings, as the original class file format does. In-
stead, it uses a new way for field, method, and class resolution which is based on numeric
identifiers. Furthermore, all information not necessarily needed for execution of a class
file is dropped, including the complete Attribute section. That means, that no bytecode
instructions are present in the new class file. In order to support this new invented slim
class file format, the actual bytecode of a class file is manipulated and resides on the
network host until the mobile client requests parts of it.

To start execution of a Java program on the client, only the slim class file that includes
the main() method, has to be present on the mobile device. Once execution of the program
has started, the client requests classes in form of the new slim file format and bytecode
in form of pre-linked basic blocks, as this is the smallest granularity of Java bytecode.
Hence, only code indispensably needed for execution of a Java program is shipped to the
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mobile device and therefore the code and memory footprint of the Java virtual machine is
reduced.

4.2.1 Client-Server Architecture

Figure 4.3 illustrates the overall client-server architecture of the SlimVM approach. On
the server-side, we use the Byte Code Engineering Library BCEL to analyze all application
and library class files referenced by the Java program to be executed. Since BCEL offers,
amongst others, a package to dynamically generate JavaClass objects, we use this package
to strip unnecessary information of a class file and to compile the analyzed information
gathered, into the new slim class file format. Immediately after the compilation process
is finished, and all classes are written into the new slim file format, the server, which we
also programmed using BCEL is started.

In order to develop SlimVM on the client-side, we modified and customized the Java
virtual machine JamVM, as it is a virtual machine whith a small memory footprint. Since
JamVM uses the GNU classpath and does not work with any other Java library path, we
have to analyze these library class files on the server.

Network connection

requests

responds

classes,
basic blocks &

metainformationSlimVM

Client

calls

native 
method 
libraries

application  
data files

accesses

Server

BCEL

application  
classes

gnu 
classpath

analyzes

analyzes

Figure 4.3: Client-server architecture of SlimVM.

Once execution on the client is started, classes in the new format and bytecode in form
of pre-linked basic blocks are requested from the server. To do so, the server offers a number
of callback functions, either to request missing data, or to transfer metainformation needed
for execution on the client. This is necessary to support the Java Native Interface on
the client. For example, assume that a native method (all native method libraries are
present on the client) is called by the Java program. As I replaced all method names by
a distinct numeric identifier, the corresponding native method can’t be called, because
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native methods are called by their name. Therefore, the client needs to callback to the
server to request the corresponding method name, before the native method can be called
and execution of the program continuous.

4.2.2 SlimVM

To support on demand code loading, interpret modified instructions, and to load classes
in the new format, we customized the Java virtual machine JamVM. Even though it is
still a stack based machine, we carried out a lot of changes to make it feasible for the
new approach. Figure 4.4 illustrates the overall architecture of the modified Java virtual
machine SlimVM.
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Figure 4.4: Architecture of SlimVM.

Whenever execution of a new application is started, at first, SlimVM tries to establish a
TCP connection to the server. Since no bytecode is present on the mobile device at startup,
SlimVM shuts down if connecting to the server fails, because then no class information
and no bytecode instructions can be requested, and therefore no Java program can be
executed. If the connection is finally established, SlimVM starts its initialization process.
Some basic classes like java.lang.Object, java.lang.Class or java.lang.String are transferred
in the new slim file format to the client. The initialization process includes initialization



CHAPTER 4. DESIGN 44

of native methods, DLLs, Java Native Interface, etc. and the initialization of the heap
size.

After the virtual machine is initialized, the static method main() of the program to be
executed is invoked and the first basic block of this method is requested from the server.
The interpreter starts executing the instructions of the first basic block. Whenever a new
method is invoked, the Linker looks up the class of the method. If the class has not been
transferred to the mobile device so far, it is requested from the server and loaded through
a customized class loader. This modification of the class loader is necessary, because class
files are transferred in the new slim file format. When the class is loaded, the method is
finally invoked, therefore a new frame is popped onto the frame stack, and the first basic
block of this method, is also requested from the server. If the interpreter reaches a branch
instruction or the end of the basic block, simply the next or the corresponding basic block,
in case of a branch instruction, is requested.

Since all Java class files are analyzed on the server prior of execution on the client, I
developed a new slim file format which makes the representation of classes, methods, etc.
as string constants dispensable. Thus, every string constant is replaced by an numerical
identifier which makes the usage of the constant pool redundant.

As illustrated in figure 4.5, every class consists of several methods and every method
contains of basic blocks which hold the actual bytecode instructions.
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BB 0 BB 1 BB 2 BB 3 BB 4 BB 5 ...

Figure 4.5: Interaction of classes, methods, and basic blocks.
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Some basic blocks are needed for execution of a Java program and others don’t. For
example, if an if statement is executed, the else statement can’t be executed. Therefore only
bytecode instrcutions for the if branch are relevant and needed for execution on the client.
Thus, only bytecode instructions necessarily needed for execution of the Java program
need to be transferred to the mobile device.

To avoid transferring the same basic block over and over again when the method is
called repeatedly, every transferred basic block is stored on the client in a format illustrated
in Listing 4.2.

Listing 4.2: Internal representation of a basic block in SlimVM
1 typede f s t r u c t s l i m b a s i c b l o c k {
2 int b a s i c b l o c k i d ;
3 int c o d e s i z e ;
4 unsigned char ∗ code ;
5 }Sl imBasicBlock ;

When the invoked method is a native method, the method is programmed in native
code (in case of SlimVM in C), then no bytecode instructions for this method are available
and can’t be requested from the server. But since the name of the method was replaced
by the numerical identifier and native methods are called by name, the client needs to call
back to the server in order to request the native name of this method.

Usually, every Java class file contains of a Code Attribute which normally holds the
actual bytecode instructions. But as I use basic blocks as the smallest granularity of
bytecode, I dropped the whole Attribute section of the class file and therefore, every
method holds basic blocks instead of the whole bytecode instructions as illustrated in
Listing 4.3.

Listing 4.3: Internal representation of a method in SlimVM
1 typede f s t r u c t sl immethodblock {
2 Class ∗ class ;
3 int methodid ;
4 int i s s t a t i c ;
5 char ∗ type ;
6 int i n n e r i d ;
7 u2 b a s i c b l o c k c o u n t ;
8 Sl imBasicBlock ∗∗ b a s i c b l o c k s ;
9 int currentbb id ;

10 int i s n a t i v e ;
11 void ∗ n a t i v e i n v o k e r ;
12 char ∗nativename ;
13 int n a t i v e e x t r a a r g ;
14 u2 max stack ;
15 u2 max loca l s ;
16 u2 args count ;
17 void ∗ code ; ( nece s sa ry for JNI methods )
18 } SlimMethodBlock ;

Furthermore, a SlimMethodBlock holds information like the method’s numerical iden-
tifier, whether the method is static or not. And some information needed to support
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Reflection in Java, like the innerid, which is used, for example, to create the correct con-
structor object. Line 10 indicates, whether a method is native or not. If the method is
native, then this method doesn’t hold any basic blocks. Instead, the nativename of line
12 is requested from the server in order to call the correct native method. Either the
native invoker points to the correct native method if available, otherwise the JNI has to
be called and therefore line 17 points to the corresponding code.

4.3 Client-Server Communication

Client and server are connected over a TCP connection. The Server offers seven different
callback functions which are described in more detail in Section 5.4.1.

Figure 4.6 illustrates how class information can be requested from the server. First, the
client calls the GetClassData() function with the numerical class identifier as parameter.
The server then looks up that class in BCEL and sends the length of the bytecode to be
sent back to the client. The client receives the length and sends back OK to the server.
Then the server sends the requested bytecode.

Client

GetClassData()

sendDataLength

OK

sendClassData

Server BCEL

lookupClass()

ClassData

Figure 4.6: Sequence Diagram for getClassData().

Figure 4.7 illustrates how a basic block can be requested from the server. The client
calls the function getBasicBlock given the numerical class identifier, the numerical method
identifier and the number of the requested basic block. With this information the the
server looks up the basic block in BCEL and sends the length of the data to be sent back
to the client. The client answers with OK and the server sends the requested basic block.
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Client

GetBasicBlock()

sendDataLength

OK

sendBasicBlockData

Server BCEL

lookupBasicBlock()

BasicBlock

Figure 4.7: Sequence Diagram for getBasicBlock().

Figure 4.8 is meant to give an overview of how metainformation can be requested form
the server. As illustrated the client wants to request the Number (identifier) of a basic
block which catches an thrown exception. The client calls the function GetExceptionBa-
sicBlockId given the numerical identifier of the class, the identifier of the method and the
number of the basic block including the offset where the exception occured. The server
looks up the instruction in BCEL, after some more look ups the corresponding catching
basic block is found and the requested number of the basic block is sent back to the client.

Client

GetExceptionBasicBlockId()

sendBasicBlockData

Server BCEL

lookupBasicBlockId()

BasicBlockId

Figure 4.8: Sequence Diagram for getExceptionBBid().



CHAPTER 4. DESIGN 48

4.4 Use Case of SlimVM

Figure 4.9 illustrates a typical Use case for executing a Java program in SlimVM. The
Actor starts executing the Java program on the mobile device by starting SlimVM with
the slim class file including the main() method as parameter.
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of program

stop
execution
of program

<extends>

Figure 4.9: Use case of execute Java program.

Table 4.1 shows the gathered description of the Use case execute Java program.
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Table 4.1: Use case description of execute Java program

Use case name Execute Java program
Goal Execute a Java program in SlimVM
Summary An actor starts a Java program to be executed by the

modified Java virtual machine SlimVM
Actors User, SlimVM on Client, Server (BCEL)
Preconditions - all class files need to be present on the server

- TCP socket needs to be ready for connection
Triggers Actor starts executing the Java program by starting

SlimVM with the slim class file including the main()
method as parameter

Basic course of events - class files are read into BCEL
- class files are analyzed in BCEL
- class files are compiled into the new slim file format
- execution of the program starts
- a tcp connection is established
- SlimVM is initialised
- classes, basic blocks, metainformation are requested from

the server in order to execute program
- execution of program finished

Alternative paths
Postconditions
Notes
Author and date Christoph Kerschbaumer, November 21, 2008

4.5 Data Flow in SlimVM

Figure 4.10 illustrates a reduced Data Flow Diagram in SlimVM. SlimVM starts executing
a Java program and whenever a class needs to be requested from the server, SlimVM calls
back to the server and requests that needed class. The same scenario for basic blocks of a
Java program. After a while, more and more classes and basic blocks are present on the
mobile device and the callback rate declines.

If a callback to the server for what reason ever fails, SlimVM is not able to continue
executing the program because parts of the bytecode are then missing. Therefore SlimVM
needs to stop executing and shuts down. Not illustrated in Figure 4.10 is the data flow
for requesting and receiving metainformation, but it follows the same schemata and is
therefore negligible in that figure.

After all bytecode instructions for a given program are executed, completion ended
successfully and execution of the program is done.
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Figure 4.10: Data Flow in SlimVM.



Chapter 5

Implementation

This chapter gives in insight into the prototype implementation of SlimVM. Starting with
the description of the development environment, this chapter presents detailed information
about the Slimcompiler, which is used to compile Java class files into the new slim file for-
mat. Furthermore, this chapter contains detailed information about the callback functions
to the server, modified opcodes, basic blocks as well as the Exceptionhandling.

5.1 Development Environment

The used software for developing this master’s thesis consists of two mayor parts:

Eclipse
Eclipse [IBM01] (version 3.3.2) is used as development environment. Eclipse is an
open source framework, based on the Java technology, it is used for numerous types
of software development. The most well known usage of Eclipse is as integrated
development environment (IDE) for the programming language Java. By installing
plugins written for the Eclipse software framework it can be extended for other
programming languages.

As the SlimVM prototype is programmed in C, for this master’s thesis Eclipse was
extended by such a plugin to offer the best available support to modify a Java virtual
machine.

BCEL
To extract information out of Java class files and to modify those class files, the Byte
Code Engineering Library BCEL [Dah01] (version 5.2) was used. BCEL is a tool
which provides a simple API for decompressing, modifying, and recomposing binary
Java class files. BCEL was used to read and analyze Java class files and furthermore
to compile the gathered information into the new slim file format.

51
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5.2 Slim Compiler

The developed Slim compiler is based on the Byte Code Engineering Library BCEL and
compiles Java class files into the new slim class file format. The basic idea is, to strip
unnecessary information of a Java class file. Therefore, we replaced method, and class
names, which are currently represented as string constants in the constant pool, by numeric
identifiers. Hence, it is possible to drop the whole constant pool and to safe memory in a
class file. In order to support the new class file format, a number of bytecode instructions
need to be updated.

The slim compiler consists of two major data structures. The classmapper, which maps
every class name to a numeric identifier and the methodmapper, which maps every method
(including signature) to a numeric identifier.

First, classes like java.lang.String or java.lang.Class and methods like the method get-
SystemClassLoader, needed by SlimVM during startup, are loaded in the corresponding
mapper, because these classes and methods need to have the same numeric identifier con-
tinuously, no matter what kind of application is loaded. Also primitive classes, like for
example the primitive type int or the primitive type char need to have the same numeric
identifier, because these classes have a fixed size and are needed to allocate memory in the
Java virtual machine.

Table 5.1: Classmapper lookup table, which maps every class name to a numeric identifer

numeric identifier class name
0 java.lang.Object
1 java.lang.Class
2 java.lang.String
3 java.lang.System
4 java.lang.Thread
5 java.lang.Throwable
6 java.lang.Error
... ...
59 (primitive type) byte
60 (primitive type) char
61 (primitive type) double
62 (primitive type) float
63 (primitive type) int
64 (primitive type) long
65 (primitive type) short
66 (primitive type) boolean
67 (primitive type) void
... ...
71 Factorial
... ...
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Then, starting with the Java class file which includes the main() method, the slim
compiler recursively analyzes all dependencies of these classes and maps every class and
every method to a number. The slim compiler creates a lookup table for classes and
methods, like the one mentioned in table 5.1. Further, the offsets for all static and object
fields of a class are calculated and the information gathered is stored together for every
class. This is necessary to replace the field resolution within the constant pool. Also the
static and object size, which is needed by the Java virtual machine for allocating memory,
is calculated during this phase. After that, the slim compiler starts analyzing the actual
bytecode which is then segmented into basic blocks. This is done for every method. Basic
blocks for every method are numbered consecutively and stored together with it. In the
next step, all basic blocks are visited and some instructions are modified. Finally, the
collected information (except of all bytecode instructions which remain on the network
host) is written out in the new slim file format which is then stored on the server and
waits to be requested for execution purpose by the mobile device.

5.3 Slim File Format

Since I analyze all Java class files on the server prior to execution on the client, I am
able to change the representation of an original Java class file to my own, especially
for this approach, customized slim file format. Unnecessary information is stripped and
the representation of the constant pool is changed. Usually the constant pool is used
to dynamically resolve symbolic references to fields, method and classes at run-time. But
since I changed the representation of classes and methods from string constants to distinct
numeric identifiers, the use of the constant pool is redundant for the new slim file format.

Different to a common Java class file, the new invented slim class file format has
no section Access rights and no section Class Attributes. Usually the attributes section
contains, amongst others, the bytecode instructions for every method of a class. But since
the new format doesn’t hold any actual bytecode instructions at all, we dropped these
two sections. In other words, all bytecode instructions remain on the server in form of
pre-linked basic blocks, the use for the attribute section became redundant. Figure 5.1
illustrates the new slim file format.
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    Reduced constant pool

    Header

    Implemented interfaces

    Fields

    Methods

Figure 5.1: Slim file format.

Listing 5.1 presents the internal representation of the Slim File Format in detail.
Equally to an original class file, also the slim class file represents exactly one class or
interface and consists of a stream of 8-bit bytes where multibyte data items are stored in
big-endian order. The * stands either for an internal used structure for methods, fields,
the reduced constantpool, or interfaces.

Listing 5.1: Slim File Format
1 Class F i l e {
2 u2 c l a s s i d :
3 u2 s u p e r c l a s s i d ;
4 u2 i s a b s t r a c t ;
5 u2 i s i n t e r f a c e ;
6 u1 has main ;
7 u2 main id ; ( i f has main == 1 ; )
8 u1 h a s c l i n i t ;
9 u2 c l i n i t i d ; ( i f h a s c l i n i t == 1 ; )

10 u2 i n t e r f a c e s c o u n t ;
11 ∗ i n t e r f a c e s [ i n t e r f a c e s c o u n t ] ;
12 u2 reduced cons tant poo l count ;
13 ∗ r educed cons tant poo l [ r educed cons tant poo l count ] ;
14 u2 s t a t i c s i z e ;
15 u2 o b j e c t s i z e ;
16 u2 f i e l d s c o u n t ;
17 ∗ f i e l d s [ f i e l d s c o u n t ] ;
18 u2 methods count ;
19 ∗ methods [ methods count ] ;
20 }
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The Slim File Format is divided into five basic sections which are described below:

Header
The header of the slim file format contains basic information of every class like
the class id and super class id. The header also contains information if the class is
abstract or if the class is an interface, stored in is abstract and is interface. Further,
the header includes information if the class has a main() method, and if so, the
has main value is followed by a number which represents the internal representation
of this method stored in main id. Finally, the header includes information if the
class has a static constructor stored in has clinit, and if so, this value is followed
by a number which represents the internal representation of this method, stored in
clinit id.

Figure 5.2 illustrates the internal representation of the classid. Usually arrays are
represented in the constant pool by a leading [ followed by the name of the class.
Since class names are no longer represented in form of string constants, I use the first
8 bit of the classid to indicate the array depth. The remaining 24 bit indicate the
actual classid. This heads to a limitation for arrays with a depth deeper than 256,
but since this doesn’t happen often, this limitation is negligible for my approach.

classidarray depth

1 2 3 4 5 6 7 8 ...9 10 11 12 13 14 15 16 17 18 19 20 1
030 31 3229

Figure 5.2: Internal representation of the classid.

Implemented interfaces
The interfaces count indicates the number of direct implemented superinterfaces of
the class followed by an array of classids, stored in interfaces[interfaces count], which
represent the implemented interfaces.

Reduced constantpool
Since I don’t need the constant pool to dynamically resolve classes, methods and
fields anymore, the constant pool almost became redundant. But only almost, be-
cause I have to transfer e.g. the Hello world! string constant, which should be
displayed on the screen when executing a simple Hello World program. Therefore, I
use the section Reduced constantpool to transfer string constants needed by a class
file.

The reduced constant pool count indicates the number of following string constants
which are stored in the array reduced constant pool[reduced constant pool count].
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Fields
The section Fields holds information about the static and object size of a class,
stored in static size and object size. Usually this values are calculated in the Java
virtual machine during runtime, but as I changed the representation of the constant
pool, I don’t have the opportunity to look up any information in the constant pool.
Therefore even constant values of fields are directly stored in the fields array.

The fields count indicates the number of following fields which are stored in the array
fields[fields count].

Methods
The methods count indicates the number of following methods of each class, which
are stored in methods[methods count]. For every method of a class, this section
contains information like the distinct method identification number, whether the
method is static or not and whether the method is native or not. If it is not , this
section includes the number of basic blocks for the method. Otherwise the number
of basic blocks is zero and the Java virtual machine calls back to the server to get
the methods native name in order to execute this method.

Furthermore, this section includes information needed for execution in the Java
virtual machine like max stack, which indicates the maximum stack size or max locals,
which indicates the maximum number of local variables during the execution of this
method. Finally, the section methods includes the number of parameters, which this
method takes.

5.4 Server

As all information of the program to be executed is analyzed and stored in BCEL, I also
used BCEL in order to develop the server for the SlimVM approach.

Immediately after the slim compiler has finished analyzing and writing out all refer-
enced class files of the program to be executed, the server is started. All code, including
class information in the new slim file format and bytecode instructions in form of pre-
linked basic blocks, remains on the server and is requested by the SlimVM on the client
at runtime. In order to support this approach, the server needs to provide a number of
callback functions which are presented in pseudo code in Listing 5.2.
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5.4.1 Callback Functions

Listing 5.2: Pseudo code for the server
1 while ( true ){
2 switch ( c l i e n t r e q u e s t ){
3 getClassData ( ) ;
4 getBas icBlock ( ) ;
5 getMethodName ( ) ;
6 getMethodId ( ) ;
7 getClassName ( ) ;
8 ge tC la s s Id ( ) ;
9 g e t F i e l d O f f s e t ( ) ;

10 getCatchBas icb lockId ( ) ;
11 }
12 }

The two most needed functions are the getClassData() and the getBasicBlock(). The
first one is used to request class information in the new slim file format and the second
one is used to request a piece of bytecode in form of a basic block. The other functions
are needed for resolution purposes. Some of those functions are necessary to support re-
flection and native methods and others are necessary to support the exception handling
in SlimVM. The following enumeration lists and describes the purpose of every callback-
function provided by the server in more detail:

getClassData()
Whenever the Java virtual machine on the client invokes a method, the Linker looks
up the class of the method. If the class hasn’t been transferred to the client so far, it
is requested from the server. Therefore the client sends the numeric identifier of the
class to the server, the server looks up the class and gets class in form of the new slim
file format and sends the information requested back to the client in a bytestream.

getBasicBlock()
This is possibly the function needed the most during execution of a program on
the client. Whenever a method is invoked on the client, a callback to the server is
necessary in order to request the first basic block of the method. This is done by
sending the numeric identifier of class and method, and the number of the requested
basic block. A basic block is only a subset of instructions of a method and therefore
whenever a basic block reaches the end point of its instructions, either the following
basic block, or, if it is a branch instruction, the corresponding basic block has to be
requested from the server.

getMethodName()
In order to support the Java Native Interface on the client, this function is needed
to resolve a numeric identifier of a method and the identifier of the corresponding
class, to a name of a method. The client sends these two numbers back to the server,
which looks up the class in the classmapper and the method in methodmapper and
sends the name of the method back to the client.
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getMethodId()
This method is needed to support the JNI. The client sends the name of the method
to the server in order to get the corresponding numeric identifier of the method back.
The server does a lookup in the methodmapper and sends the correct number back to
the client. With this number the Java virtual machine is able to invoke the correct
method.

getClassName()
Similar to the method getMethodName(), this function helps the Java virtual ma-
chine on the client to resolve the numeric identifier of the class. The client sends
the numeric identifier back to the server, which looks up the correct name in the
classmapper and sends the corresponding name back to the client. This function is
also needed to support the JNI.

getFieldOffset()
The purpose of this function is to support the Java Native Interface on the client.
The client sends the identifier of the class, the field name and the field signature to
the server in order to get the offset of this field back. The server looks up internally
the requested field and sends the offset back to the client.

getCatchBasicblockId()
This function is needed to handle exceptions on the client. Since all bytecode in-
structions remain on the server and I dropped the whole Attribute section, also the
Exception table is no longer part of the new class file format. The purpose of the
exception table is to lookup the offset in order to handle the raised exception.

The Java virtual machine on the client calls this function giving the distinct class
identifier, the distinct method identifier, the number of the basic block and the
offset within that basic block where the exception was thrown. On the server, every
modified instruction is mapped against the original instruction and therefore it is
possible to send the number of the basic block which handles the raised exception
back to the client. With the number back basic block which handles the exception,
the client calls back to the server using the function getBasicBlock() in order to get
the corresponding bytecode instructions for the exception handling and continuos
execution.

5.5 Client

To support the new class file format and to load class information and basic blocks on
demand, we changed the functionality of the class loader. SlimVM has no conventional
class loader, it is rather more a network client which requests classes and basic blocks from
the server and loads it into an internal used format. Certainly, the biggest changes affect
the interpreter, because it has to interpret a lot of modified bytecode instructions.
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5.5.1 Modified Instructions

In order to support the new slim class file format, we manipulated a lot of instructions.
Since I dropped the whole constant pool in the new format, most of the manipulated
instructions are instructions which reference into the runtime constantpool. The following
enumeration lists and describes all modified instructions of the SlimVM approach:

Ldc, Ldc w, Ldc2 w
Usually the ldc (load constant) opcode is followed by an index into the runtime
constantpool, which resolves the constant to be loaded, before it is pushed onto the
operand stack. As illustrated in Figure 5.3 the modified ldc opcode is followed by
an identifier which is either:

• 1 for a string constant to be loaded onto the operand stack. If so, the next 4
bytes indicate the numerical class identifier and the last 4 bytes indicate the
index into the reduced constant pool, where the string constant is stored.

• 2 for an int value. In this case, the next 4 bytes are redundant and the value
to be pushed onto the operand stack is stored in the last 4 bytes.

• 3 for a float value. If so, the next 4 bytes are redundant and the value to be
pushed onto the operand stack is stored in the last 4 bytes.

1 2 3 4 5 6 7 8 9 10

opcode

classid

identifier

value

modified ldc instructionoriginal ldc instruction

1 2

opcode

index

Figure 5.3: Comparison of original and modified ldc instruction used in SlimVM.

Getstatic
The modified getstatic opcode is followed by an identifier which indicates whether a
value 8 bytes in size, like a double or float, or 4 bytes in size, like an int, is pushed onto
the operand stack. The next 4 bytes indicate the distinct class identifier number, in
which the field to be pushed is stored and the last 2 bytes indicate the field’s offset.

Putstatic
Similar to getstatic, the putstatic opcode is followed by an identifier which indicates
whether 8 or 4 bytes have to be popped from the operand stack and stored in the
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field. The next 4 bytes indicate the numerical class identifier number of the field
and the last 2 bytes indicate the fields offset within the class.

Getfield
The original getfield opcode is followed by 2 bytes, which indicate the index into
the runtime constant pool in which the field is then resolved, and the value of it is
pushed onto the operand stack. The modified getfield opcode, as illustrated in figure
5.4, is followed by an identifier which indicates whether the field is 8 bytes or 4 bytes
in size and therefore whether 8 bytes (long, double) or 4 bytes (like an int) is pushed
onto the operand stack. The last 2 bytes indicate the offset within the object.

10

original getfield instruction

1 2

opcode

index

3 1 2 3 4

opcode

offset

identifier

modified getfield instruction

Figure 5.4: Comparison of original and modified getfield instruction used in SlimVM.

Putfield
Similar to the getfield instruction, the putfield opcode is followed by an identifier,
which indicates whether 8 bytes or 4 bytes have to be popped from the operand
stack and stored in the objects field. The following 2 bytes indicate the offset within
the object.

Invokevirtual, Invokespecial, Invokestatic, Invokeinterface
The original opcode for invoking a method is followed by 2 bytes which indicate an
index into the runtime constant pool in order to resolve the corresponding method.
As illustrated in Figure 5.5 the modified instruction for a method invocation is
followed by the numerical class identifier, the numerical method identifier and a
basic block number. By means of this information, the method can be resolved. The
modified class loader looks up the class and if the class has not been loaded so far,
it is requested from the server. With the knowledge of the methods parameters, the
virtual method lookup can be executed before the actual method is invoked and a
new frame is popped on the frame stack. Finally, the correct basic block number is
needed in order to request the correct block with the corresponding instructions so
that the method can be executed.
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opcode

classid

methodid

1 2

modified invokespecial instruction

3 4 5 6 7

basicblockid

original invokespecial instruction

1 2

opcode

index

3

Figure 5.5: Comparison of original and modified invokespecial instruction used in SlimVM.

New
The opcode new is followed by the numerical class identifier which is used to resolve
the correct class. When the class is resolved finally, an object of that class can be
allocated and a reference to that class is popped onto the operand stack.

Anewarray
The opcode of the newarray instruction is almost identical to the new instruction.
The opcode is followed by an numerical identifier which indicates the class of which
an array should be allocated. A value is popped from the operand stack which
indicates the array length. If that value is not negative, an array with the length of
the popped value of the requested class is allocated and a reference is popped onto
the operand stack.

Multianewarray
The multianewarray opcode is followed by a numerical class identifier and a number
which indicates the dimensions of the array. The multi array is allocated and a
reference to it is pushed onto the operand stack.

Branch Instructions
For all branch instructions like for example the goto instruction and all kinds of
if instructions, the opcode is followed by an relative offset in the bytecode. As I
segmented the bytecode into basic blocks, it is impossible to handle relative offsets
within the bytecode. Therefore, as illustrated in figure 5.6, all offsets are replaced
by a number of a basic block. With this information the correct basic block can be
requested from the server and execution of the program continues.
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original goto instruction

1 2

opcode

offset

3 1 2

opcode
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modified goto instruction

3

Figure 5.6: Comparison of original and modified goto instruction used in SlimVM.

5.5.2 Basic blocks

A basic block is a sequence of instructions with only one entry and one exit point. That
means, no jump instructions and also no destinations of jump instructions are included
within a basic block.

Whenever a basic block is transferred to the mobile device, the client adds a goto
instruction at the end. This is reasonable, because whenever a basic block reaches its end,
the next basic block has to be requested from the server. To overcome the overhead, this
is done on the client, because it is useless to transfer an additional instruction for every
basic block when this can be done on the client.

Figure 5.7 illustrates the breakdown of bytecode to basic blocks of the factorial program
given in Listing 2.6. This example also uses the modified instructions for the SlimVM
approach.

The first two instructions iconst 1 and istore 0 are the same as in the original bytecode.
The first modified instruction is getstatic at address 2. Classid 73 is the numerical identifier
of the class Factorial(), identifier 2 indicates that the field holds an integer value at offset
0. Basic block 1 doesn’t include any changes compared to the original bytecode.

Basic block 2 at address 21 shows an ifgt instruction which is now followed by the basic
block number 1. Is the value of the local variable in slot 1 greater than 0, than a jump to
basic block 1 is executed.

Basic block 3 starts with a getstatic instruction. Classid 3 is the numerical identifier for
the class java.lang.System, identifier 5 indicates that the field at offset 4 is a reference to an
other class. The next interesting instruction in this basic block is found at address 32. In-
vokevirtual of classid 74 and methodid 34 means that the method java.io.PrintStream.println
should be invoked. The branch instruction at address 39 has the number 5 as an operand
which indicates a jump to basic block 5 and the method returns.

Basic block 4 includes all instructions necessary for the exception handling. Is no
exeception thrown, this code is never executed. At address 43, the field java.lang.System.err
is popped onto the operand stack and at address 51 the method java.io.PrintStream.println
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is invoked, before the method in basic block 5 finally returns.

   
   0: iconst_1
   1: istore_0
   2: getstatic          #classid 73, identifier 2, offset 0
   9: istore_1
   10:goto 2

   13: iload_0
   14: iload_1
   15: imul
   16: istore_0
   17: iinc 1, -1

   20: iload_1
   21: ifgt 1

   24:getstatic          #classid 3, identifier 5, offset 4
   31: iload_0
   32: invokevirtual #classid 74, methodid 34, basicblockid 0
   39:goto 5

   42:astore_2
   43:getstatic          #classid 3, identifier 5, offset 8
   50:aload_2
   51: invokevirtual #classid 74, methodid 38, basicblockid 0

   58: return

Basic block 0

Basic block 1

Basic block 2

Basic block 3

Basic block 4

Basic block 5

Figure 5.7: Basicblock example.

5.5.3 Exceptiohandling

To support Excpetionhandling in the SlimVM approach, I mapped every modified instruc-
tion against its original instruction. This mapping table (Table 5.2) is stored on the server.
Whenever an exception occurs in the Java virtual machine on the client, it calls back to
the server using the function getCatchBasicblockId(). Given the numerical identifier of the
class, the identifier of the method and the number of the basic block including the offset
where the exception occured, the server looks up the instruction and gets the address
of the original instruction. With this address a lookup in the original Exception table is
performed, which gives the target address back. With this address, a lookup is performed
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in the mapping table which gives the number of the basic block back.

Table 5.2: Mapping table to support Exceptionhandling in SlimVM

original instructions modified instructions
0: iconst 1 0: iconst 1 Basic block 0
1: istore 0 1: istore 0
2: getstatic 2: getstatic
5: istore 1 9: istore 1
6: goto 16 10: goto 2

9: iload 0 13: iload 0 Basic block 1
10: iload 1 14: iload 1
11: imul 15: imul
12: istore 0 16: istore 0
13: iinc 1, -1 17: iinc 1, -1

16: iload 1 20: iload 1 Basic block 2
17: ifgt 9 21: ifgt 1

20: getstatic 24: getstatic Basic block 3
23: iload 0 31: iload 0
24: invokevirtual 32: invokevirtual
27: goto 38 39: goto 5

30: astore 2 42: astore 2 Basic block 4
31: getstatic 43: getstatic
34: aload 2 50: aload 2
35: invokevirtual 51: invokevirtual

38: return 58: return Basic block 5

Exception table:
from to target type
20 27 30 Class java/lang/Exception

For example, when the instruction invokevirtual of basic block 3 raises an exception,
the client calls back to the server with the corresponding class and method identifier. A
lookup in this table is performed where the modified instruction invokevirtual of address
32 is mapped against the original instruction at address 24. With address 24, a lookup
in the Exception table is performed and the the target for the handling at address 30 is
found. Again, a lookup in the mapping table is performed. Address 30 is the entry point
of basic block 4 and therefore the number 4 is sent back to the client. With this number,
the client requests the bytecode instructions of this basic block and execution of the Java
program continues.
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Evaluation

In this chapter, the results of the gathered tests are given. The goal of the following
performance tests is to show that only a small subset of information of an Java class
file is actually needed for execution of a program, even though conventional Java virtual
machines load the whole class.

6.1 Test Environment

The test environment for the prototype implementation of SlimVM consists of two separate
running systems, the client and the server. Client and server are connected over the router
Zyxel - Prestige 334 with a 100MBit ethernet cable.

Server
On the server side we use the Byte Code Engineering Library BCEL version 5.2 for
analyzing Java class files. The actual server is also implemented using BCEL and
runs on an Intel Pentium 4 PC with 2.53 GHz CPU and 512 MB RAM. The used
operating system for the server is Microsoft Windows XP Professional Version 2002.

Client
The client consists of an Apple MacBook with 2 GB 667 MHz DDR2 SDRAM and
a 2 GHz Intel Core 2 Duo. The used operating system on the MacBook is Mac OS
X Leopard version 10.5.4. For the developed SlimVM, we modified and customized
the Java virtual machine JamVM version 1.5.1.

6.2 Overview of the Benchmarks

We use a number of test programs and some selected benchmarks in order to be able to
compare the gathered results by the developed SlimVM. We run all tests on SlimVM as
well as on JamVM, hence, it is possible to compare the gathered results. Furthermore,
these test cases are used to present the achieved space savings and the effect on the
performance of the prototype implementation.

65
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We use a program with an empty main method, which is meant to pinpoint the startup
overhead of SlimVM. Furthermore, we use a simple HelloWorld program and the afore
mentioned and discussed Factorial program.

In order to be able to make some standardized and comparable statements for programs
executed by SlimVM, we use the following benchmarks:

Linpack [Jec04]
performs numerical linear algebra like vector and matrix operations.

Scimark 2 [PM04]
is a benchmark which measures numerous computational kernels and summarizes
the score in approximate Mflops/s.

FloatingPointCheck of Specjvm98 [SPE98]
measures a number of floating point operations and presents a summarized score of
the gathered results.

ArithBench of JavaGrande [EPC07]
is a benchmark which measures a number of arithmetical operations

LoopBench of JavaGrande [EPC07]
is a benchmark which measures a number of loop operations

6.3 Measured Results

One of the initial claims of this thesis is, to demonstrate the load overhead of a Java
virtual machine. In the next section we present the space savings achieved by off target
analyzing of Java class files, pre linking and on demand code loading.

The measurements show the ratio between the information analyzed on the server
compared to the information transferred to the client. We do not compare the information
transferred to the whole gnu classpath which consists of 7.258 class files with a total size
of 14.89 MB (15.613.297 bytes).

6.3.1 Memory Space Savings

Figure 6.1 shows the ratio between the analyzed information in bytes and bytes transferred
to the client. Conventional Java virtual machines need to have an enormous amount of
library code to be present on each client device. SlimVM, on the other side, loads only
parts of a class file, necessarily needed for execution.

As illustrated in Figure 6.1, commonly 94% of information analyzed on the server is
not needed for execution of a Java program. That means, even if only needed class files
are present on a conventional mobile device, that 94% of the information stored in those
class files is not needed for the correct execution of that Java program.
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bytes transferred
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Empty main() method
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Figure 6.1: The ratio between bytes analyzed on the server and bytes transferred to the
client shows, that commonly only 5% of the analyzed bytes on the server are actually
requested by SlimVM on the client.

The exact numbers of bytes analyzed on the server and bytes transferred to the client
are listed in more detail in Table 6.1.

Table 6.1: Analyzed and transferred bytes of performed test cases

bytes analyzed bytes transf. Reduction
Empty main() method 2.979.103 119.376 95.9%
HelloWorld program 2.979.264 163.783 94.5%
Factorial program 2.979.595 163.857 94.5%
Linpack 2.984.922 168.339 94.3%
Scimark2 3.000.434 172.269 94.2%
SpecJVM.FloatingPointCheck 2.992.489 172.191 94.2%
JavaGrande.ArithBench 2.993.179 174.782 94.1%
JavaGrande.LoopBench 2.988.503 170.009 94.3%

One of the most interesting facts is, that a common JVM loads a high amount of a
programs bytecode into memory, but in fact, only few bytecode instructions are needed to
execute that program.

Measurements conducted show, that usually 97% of bytecode instructions in form of
basic blocks are not needed for execution of that program. Figure 6.2 illustrates this fact
which is listed in detail in Table 6.2.
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Figure 6.2: The ratio between analyzed basic blocks on the server and basic blocks trans-
ferred to the Slim virtual machine on the client show, that a common Java program needs,
on average, only 3% of the analyzed basic blocks for the correct execution of a Java pro-
gram.

Table 6.2: Ratio between analyzed and transferred basic blocks

BB analyzed BB transferred Reduction
Empty main() method 38.842 796 98.0%
HelloWorld program 38.842 1.044 97.3%
Factorial program 38.849 1.048 97.3%
Linpack 38.991 1.166 97.0%
Scimark2 39.189 1.225 96.8%
SpecJVM.FloatingPointCheck 38.950 1.122 97.1%
JavaGrande.ArithBench 39.037 1.218 96.8%
JavaGrande.LoopBench 38.951 1.131 97.0%



CHAPTER 6. EVALUATION 69

Figure 6.3 shows the ratio between classes analyzed on the server and classes requested
by the Java virtual machine on the client. As listed in Table 6.3, usually 84% of the classes
analyzed on the server are not requested by SlimVM on the client. Compared to all class
files of the GNU classpath which consists of 7.258 classes, only 195 classes are actually
needed to execute a simple HelloWorld program.
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Figure 6.3: Ratio between classes analyzed on the server and classes transferred to the
mobile device show, that commonly only 15% of the classes analyzed are actually transferred
to the client.

Table 6.3: Ratio between analyzed and transferred classes

classes analyzed classes transferred Reduction
Empty main() method 1.269 150 88.2%
HelloWorld program 1.269 195 84.6%
Factorial program 1.269 195 84.6%
Linpack 1.269 198 84.3%
Scimark2 1.277 206 83.8%
SpecJVM.FloatingPointCheck 1.274 205 83.9%
JavaGrande.ArithBench 1.273 204 84.0%
JavaGrande.LoopBench 1.273 203 84.1%
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6.3.2 Memory Space Savings for Lazy Loading of Classes

Figure 6.4 illustrates the ratio between the size of classes loaded by JamVM compared
to the size of requested slim classes (including the size of requested basic blocks during
runtime) loaded by SlimVM. Measurements show that commonly 70% of the size loaded
by a common Java virtual machine is not necessarily needed for the correct execution of
that program.
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Figure 6.4: The ratio between the size of classes loaded by JamVM and the size of classes
(including requested basic blocks) loaded by SlimVM shows, that commonly 70% of the
bytes loaded by a common JVM is not necessarily needed for execution of that program.

Table 6.4: Ratio between bytes loaded by JamVM and bytes loaded by SlimVM

JamVM SlimVM Reduction
Empty main() method 443.837 119.376 73,1%
HelloWorld program 543.414 163.783 69,8%
Factorial program 543.745 163.857 69,8%
Linpack 560.869 168.339 69,9%
Scimark2 575.533 172.269 70,0%
SpecJVM.FloatingPointCheck 577.587 172.191 70,1%
JavaGrande.ArithBench 574.318 174.782 69,5%
JavaGrande.LoopBench 569.642 170.009 70,1%
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6.3.3 Class File Size Reduction

Since we use our own slim file format for transferring classes, we are able to reduce the
size of data transfers to the client. As mentioned in the previous chapters, we drop
unnecessary information and use our own format for field, method, and class resolution.
Hence, as illustrated in Figure 6.5, we are able to reduce the file size of a Java class file
by about 85%, but with the annotation that these class files do not include any actual
bytecode instructions, as those are stored seperately on the server. Detailed information
of space savings for all executed test programs is given in Table 6.5.

original class file size (in bytes)
slim class file size (in bytes)

ratio in %
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Class.class
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System.class
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Figure 6.5: The ratio between the size of original class files compared to the slim files shows,
that a slim file only has 15% of the size of an original class file, but with the annotation
that the slim files do not include any actual bytecode instructions.

Table 6.5: Size reduction of class files in the new slim file format

original class size slimvm class size Reduction
Object.class 1.931 320 83.4%
Class.class 15.719 1.949 87.6%
String.class 15.645 2.873 81.6%
System.class 4.160 672 83.8%
HelloWorld.class 542 89 83.5%
Factorial.class 873 123 85.9%



CHAPTER 6. EVALUATION 72

6.3.4 Effect on Performance

The initial claim of SlimVM was to reduce the code footprint for connected embedded Java
virtual machines. We present a prototype implementation with a simple execution mode
where no optimization work for increasing the execution speed was done. The bottleneck
is the network delay which slows down the execution speed of SlimVM. Furthermore, we
did not implement opcode rewriting or any other optimization which would make the
presented virtual machine competitive with a conventional JVM.

Table 6.6 and table 6.7 list the values of the ArithBench and Loopbench of the Java-
Grande benchmark. The resulsts of the ArithBench for addition, multiplication and divi-
sion of values are almost identic. The results of LoopBench show, that SlimVM is slightly
slower than JamVM for loops. This is most possibly caused by the basic block jumps. An
conventional Java virtual machine is able to make jumps for and back in the bytecode,
SlimVM has to a look up first, if the corresponding basic block for a jump instruction has
been loaded so far. If so, the basic block is loaded and the instructions of it are executed,
otherwise the basic block has to be requested from the server. These two activities slow
down the SlimVM for loop operations.

Table 6.6: ArithBench of JavaGrande

JamVM SlimVM
Section1:Arith:Add:Int 5.0050404E7 4.2522708E7 (adds/s)
Section1:Arith:Add:Long 3.3375432E7 3.7372264E7 (adds/s)
Section1:Arith:Add:Float 4.8466204E7 4.5153644E7 (adds/s)
Section1:Arith:Add:Double 3.3506826E7 3.554784E7 (adds/s)
Section1:Arith:Mult:Int 5.1220008E7 3.9982916E7 (multiplies/s)
Section1:Arith:Mult:Long 3.0621438E7 3.3924836E7 (multiplies/s)
Section1:Arith:Mult:Float 4.7202536E7 4.4667392E7 (multiplies/s)
Section1:Arith:Mult:Double 3.4351608E7 3.3895008E7 (multiplies/s)
Section1:Arith:Div:Int 3.9701944E7 2.9483534E7 (divides/s)
Section1:Arith:Div:Long 1.766469E7 2.0736616E7 (divides/s)
Section1:Arith:Div:Float 4.2412632E7 4.4158748E7 (divides/s)
Section1:Arith:Div:Double 3.477818E 3.4905992E77 (divides/s)

Table 6.7: LoopBench of JavaGrande

JamVM SlimVM
Section1:Loop:For 4.8624424E7 1.8106868E7 (iterations/s)
Section1:Loop:ReverseFor 6.5392136E7 2.0531328E7 (iterations/s)
Section1:Loop:While 5.266474E7 2.7598754E7 (iterations/s)
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6.3.5 Runtime Distribution of Code requested

Figure 6.6 and Figure 6.7 show the runtime distribution of code requested from the server.
As illustrated, the code requested for a simple Hello world program is almost continuously
where else the code requested for the FloatingPointCheck is high in the beginning, but then
almost identic. This is due to the while loop which is performed in this benchmark.

The big jump of requested code in both programs is the request of the class
gnu.java.lang.CharData which is still enormous in size.
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Figure 6.6: Runtime distribution of bytes requested from the server for a HelloWorld pro-
gram.

0

50000

100000

150000

200000

program runtime

bytes requested

Figure 6.7: Runtime distribution of bytes requested from the server for the Floating-
PointCheck benchmark for SpecJVM.
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6.3.6 Appearance of ldc Instructions

Table 6.8 gives an overview of the number of appearances of a ldc instruction for int, float,
long or double. This table shows that the appearance of such an instruction is very low
and even when it appears is the likelihood that one and the same constant value out of
the constant pool can be used for two or more instructions is very low. That means, that
the overhead for transferring a constant value directly with the bytecode instruction is
negligible.

Table 6.8: Appearance of ldc in the most common classes

long
int float double total identic

Object.class 1 0 0 0 0
Class.class 3 0 0 0 0
String.class 4 0 0 0 0
System.class 0 0 0 0 0
Thread.class 3 0 0 3 2



Chapter 7

Conclusions

In the preceding chapters, the design decisions and the various techniques of the SlimVM
were presented. Finally, this chapter concludes the work of this master’s thesis by summa-
rizing the main contributions including their limitations. Last but not least, some future
work to improve and optimize the approach of SlimVM is discussed.

In this master’s thesis we presented a solution for persistent connected embedded
Java virtual machines where all code, including application and library code, resides on a
network host and is requested by the client only on demand.

This master’s thesis revolutionalizes present research projects in two important ways.
On the one hand, only parts of a Java class file are needed for the correct execution of
that program, and on the other hand, something else than String constants can be used
for field, method and class resolution within a JVM.

Since all Java class files needed for execution of that Java program are analyzed prior
the execution on the client, we are able to use our own slim file format for Java classes.
Dropping unnecessary information and customizing the way of field, method and class
resolution makes it possible to reduce the class file size.

The breakdown of Java bytecode into basic blocks makes it possible, that only instruc-
tions actually executed, are loaded by the Java virtual machine on the client. Hence, no
overhead of bytecode instructions has to be loaded by the VM.

We developed a prototype implementation of SlimVM with a simple execution mode
and therefore here are some ideas, which would increase the execution speed of SlimVM
and would make the approach of SlimVM more competitive. At the same time, this ideas
are part of the future work for optimizing the approach of SlimVM.

A global data structure for basic blocks, not separately for every method as in the
current prototype implementation could increase the lookup speed on client and server
and reduce the network transfer. Furthermore, some of the reserved opcodes could be
used to innovate some new opcodes. For example, the ldc opcode currently is followed by
an identifier which is used to identify whether the following constant is a string, integer
or long value. In this case, three different opcodes could be used in order to increase the
execution speed. Furthermore, it would be interesting how often the same string constants
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are transferred in different classes. The usage of a global constant pool could reduce the
data transfer to the mobile device. Heuristic has to be done in order to discover how
often one and the same string constant is transferred in the current prototype. Finally,
heuristics could help in order to send more basic blocks at the same time. For example, a
certain basic block is requested, and whenever this basic block is requested, also another
certain basic block is requested right after that basic block. Hence, these two basic blocks
can be transferred at the same time and therefore the JVM on the client does not have to
call back to the server again, to request that basic block.

Summing up, we presented a Java virtual machine for connected embeddes systems,
which show that only a small subset of information is actually needed for the correct
execution of a Java program.



Appendix A

Definitions

AC Agglomerative Clustering
AG Abstract Grammar
API Application Programming Interface
AST Abstract Syntax Tree
BB Basic Block
BCEL Byte Code Engineering Library
CAP Converted Applet
CPU Central Processing Unit
DLL Dynamic Link Library
GC Garbage Collector
GNU Gnu’s Not Unix
HTML Hyper Text Markup Language
IDE Integrated Development Environment
JAR Java Archive
JIT Just in time
JNI Java Native Interface
JVM Java Virtual Machine
KB Kilobyte
LIFO Last in first out
MB Megabyte
MIDP Mobile Information Device Profile
OS Operating System
PC Personal Computer
PDA Personal Digital Assistant
RAM Random Access Memory
RISC Reduced Instruction Set Computer
SDRAM Synchronous Dynamic Random Access Memory
TCP Transmission Control Protocol
VM Virtual Machine
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