
Enforcing Content Security by Default
within Web Browsers

Christoph Kerschbaumer
Mozilla Corporation

ckerschbaumer@mozilla.com

Abstract—Web browsers were initially designed to retrieve
resources on the world wide web in a static manner such that
adding security checks in select locations throughout the codebase
sufficiently provided the necessary security guarantees of the web.
Even though systematic security checks were always performed,
those security checks were sprinkled throughout the codebase.
Over time, various specifications for dynamically loading content
have proven that such a scattered security model is error-prone.

Instead of opting into security checks wherever resource loads
are initiated throughout the codebase, we present an approach
where security checks are performed by default. By equipping
every resource load with a loading context (which includes
information about who initiated the load, the load type, etc.),
our approach enforces an opt-out security mechanism performing
security checks by default by consulting a centralized security
manager. In addition, the added load context allows to provide
the same security guarantees for resource loads which encounter
a server-side redirect.

I. MOTIVATION

Web browsers have become complex software applications
that need to be capable of providing security guarantees when
loading URIs from the web. For example, a browser needs to
ensure that a web page can not access local resources on a
user’s computer. While web browsers were initially designed
for retrieving and displaying information resources on the
world wide web in static HTML, modern web browsers need
to support the latest and constantly evolving web standards
capable of loading resources, like e.g. the fetch specifica-
tion [WHATWG, 2015].

Before loading a URI, web browsers have to perform nu-
merous content security checks, such as evaluating that a script
does not violate the same origin policy (SOP) [W3C, 2010b],
or ensuring that the requested URI complies with the page’s
Content Security Policy [W3C, 2014a].

At first, performing security checks in selective locations
throughout the codebase sufficed to provide the required
security. However, the abundance of new web standards for
retrieving resources on the web caused such sprinkled security
checks to be error-prone. Even though systematic security
checks are performed, a modern browser requires a central
API to provide the same security guarantees for the different
specifications capable of loading resources.

To complicate things further, the web evolved over time
such that almost 12% of resource loads result in a server-side
redirect (see Table I). To ensure the required security, browsers
have to enforce the same security checks again after a server-

side redirect to prevent a malicious page from circumventing
the initial security checks by performing a redirect.

Instead of continuing current practice where developers
have to opt-in to security checks whenever implementing a
new standard for loading resources, we present an approach
where content security is applied by default. Adding a central
API that relies on an opt-out mechanism provides the needed
infrastructure to prevent less security minded engineers from
accidentally introducing vulnerabilities.

We first provide background on the different content secu-
rity checks a browser performs before loading a URI (Sec-
tion II) and contribute the following:

• We survey content security mechanisms before instan-
tiating a load request and after a server-side redirect,
and provide the ratio of redirected URIs on the web
(Section III).

• We examine how Firefox has performed content security
checks historically (Section IV) and present design and
implementation details for enforcing content security by
default within Firefox (v.50.0) (Section V).

• We provide an assessment of the engineering needed
to retroactively provide an API for enforcing content
security by default within a browser (Section VI).

II. CONTENT SECURITY BACKGROUND

As of today, all major web browsers (Chrome, Edge, Fire-
fox, Internet Explorer, Opera, Safari) are committed to imple-
ment most (if not all) of the security specifications defined by
the World Wide Web Consortium (W3C) to improve security
in web browsers. The most important of those specifications
are:

• Same Origin Policy (SOP) [W3C, 2010b] The same
origin policy prevents malicious script on one page
from obtaining access to sensitive data on another
web page through that page’s Document Object Model
(DOM) [W3C, 2004]. The SOP defines an origin as a
combination of scheme, host and port number.
More recently, the W3C started discussions
about standardizing the concept of Subori-
gins [Joel Weinberger, Devdatta Akhawe, 2016].
Suborigins define a mechanism for programmatically
defining origins to isolate different applications running
in the same physical origin. User agents can extend the



same-origin policy with this new namespace plus an
origin tuple to create a security boundary between this
resource and resources in other namespaces.

• Cross Origin Resource Sharing (CORS) [W3C, 2010a]
To relax the same origin policy, the W3C specified CORS,
which creates a whitelist of trusted domains by extending
HTTP with a new origin request header. Hence CORS
provides a mechanism which allows restricted resources
(e.g., fonts) on a web page to be requested from a domain
outside of the originating domain.

• Mixed Content Blocking [W3C, 2014b] The Mixed
Content Blocker blocks insecure content on web pages
that are supposed to be secure. HTTP [W3C, 2016] itself
is not secure, which means connections are open for
eavesdropping and man-in-the-middle attacks. If the main
page is served over HTTPS but includes HTTP content,
then the HTTP portion can be read and modified by
attackers, even though the main page is served over
HTTPS. When an HTTPS page has HTTP content, then
the mixed content blocker can block such ’mixed’ con-
tent.

• Subresource Integrity (SRI) [W3C, 2014c] SRI pro-
vides a mechanism for website authors to provide a cryp-
tographic hash to a resource in addition to the location of
the resource. Web browsers compare the hash provided
by the website author with the computed hash from the
fetched resource and load the resource only if the hashes
match.

• Content Security Policy (CSP) [W3C, 2014a] The Con-
tent Security Policy allows web authors to define a
whitelist in a HTTP header (or HTML meta element)
to specify trusted sources for delivering content. For ex-
ample, a CSP of script-src https://good.com
permits the user agent to load script only when it is
sourced from https://good.com. Three CSP direc-
tives are particularly important and should be highlighted:

– Upgrade Insecure Requests [W3C, 2015b] The
CSP directive upgrade-insecure-requests
instructs user agents to upgrade all insecure HTTP
URIs to their secure HTTPS equivalent. The directive
targets web sites with large numbers of insecure
legacy URIs that would otherwise need to be rewrit-
ten to secure links.

– Strict Mixed Content Blocking [W3C, 2015a]
The CSP directive block-all-mixed-content
provides a stricter variant of mixed content checking
which will block optionally-blockable mixed content
in addition to blockable mixed content and prevents
users from overruling the browsers decision.

– Require SRI for [W3C, 2016] This CSP direc-
tive require-sri-for provides a mechanism for
website authors to load resources only when SRI is
defined for the resource load.

In addition to these specifications major browsers also im-
plement security standards defined by the Internet Engineering
Task Force (IETF):

HTTP Strict Transport Security (HSTS) [IETF, 2012]
HSTS protects against protocol downgrade attacks by provid-
ing a mechanism for web servers to declare that web browsers
should only interact with it using secure HTTPS connections
and never allow connecting via the insecure HTTP protocol.

HSTS Priming [Mike West, Richard Barnes, 2016] HSTS
priming proposes modifications to the behavior of HSTS to
mitigate the risk that mixed content blocking will prevent
migration from HTTP to HTTPS. Before blocking a third
party subresource as mixed content, HSTS priming would
perform an anonymous ’preflight’ request to the subresource
in question to check if the subresource is marked HSTS. If the
subresource isn’t available over HSTS it would be blocked by
the mixed content blocker

Ultimately, browsers need to enforce Access Permis-
sion Checks to guarantee a webpage can not access lo-
cal files. For example, a browser needs to block requests
trying to load an image from the local file system, e.g.
file://home/secdev/conf.png.

III. PERFORMING CONTENT SECURITY CHECKS

Whenever a browser fetches a resource from the web, the
browser has to perform all, or at least a subset of the security
checks described in Section II.

evil.com

GET good.com/library.js

response (redirect)
good.com

GET evil.com/attack.js

1

Content Security Policy: script-src good.com

Security Checks

Fig. 1: Browser performing Content Security Checks (includ-
ing checks after redirects).

Figure 1 shows a web browser that performs a GET request
of the URI good.com/library.js. Before the browser
actually initiates the network load, it performs at least an
access permission check, or applies (if applicable) the more
restrictive same origin policy. Additionally, the browser con-
strains mixed content and also enforces the page’s Content
Security Policy. As illustrated in Figure 1, the web page ships a
Content Security Policy of script-src good.com, which
instructs the browser to only load scripts originating from
good.com. The browser now checks if the host portion of the
resource matches the host defined in the CSP. In the example,
the host of the URI matches the whitelisted host in the CSP,



hence the browser initiates the GET request for the given
resource.

The server good.com responds with a server-side URI
redirect (e.g., 301 Moved Permanently) indicating that
the URI will be redirected to evil.com/attack.js. Be-
fore the browser now initiates another GET request to the
redirected URI, the browser has to perform the same content
security checks again to make sure the redirect is not trying
to mount an attack, e.g., by trying to load a local file.

In the example, the browser performs another CSP check
and detects that script is not allowed to be loaded from
evil.com because the page’s CSP only whitelists scripts
to be loaded from good.com. The browser blocks the load
and logs an error message to the browser’s console.

HTTP Response Status Codes incl. Description % %

2xx Success 61.86
200 OK 61.86

3xx Redirection 11.82
301 Moved Permanently 0.76
302 Found 7.66
307 Temporary Redirect 3.33
308 Permanent Redirect 0.07

xxx Other responses 26.32
4xx, 5xx, ... 26.32

TABLE I: HTTP connection responses [Mozilla, 2016]

As illustrated in Table I, roughly 62% of resource loads
receive a status code of 200 Success indicating that the
resource is available for loading. The fact that almost 12%
of URI loads are redirected again highlights the need for a
unified API to enforce content security checks. We find that
web sites using redirects has become de facto standard, which
again motivates our work. Observe, that the data gathered in
this paper covers a time frame of two months, taken on June
15th, 2016, where we collected and analyzed 2.4 billion URI
loads.

IV. ENFORCING CONTENT SECURITY WITHIN FIREFOX
HISTORICALLY

Terminology: The name of Firefox’ layout engine is Gecko
which reads web content, such as HTML, CSS, JavaScript,
etc. and renders it on the user’s screen. For loading resources
over the internet, Firefox relies on the network library called
Necko. Necko is a platform-independent API and provides
functionality for several layers of networking, ranging from
transport to presentation layers.

For historical reasons, Necko was developed to be available
as a standalone client. That separation also caused security
checks to happen in Gecko rather than Necko and caused
Necko to be agnostic about load context. This separation in
turn caused security checks after redirects to prove compli-
cated. Nowadays, the separation of Gecko and Necko has
vanished which allows to pass information about the load
context from Gecko down into Necko.

GECKO

NECKO

Start Resouce Load

Security Checks

Next Resource Load

Initiate Resource Load Redirect

Fig. 2: Content Security Checks within Firefox historically:
Gecko performs opt-in security checks and requests resources
through Necko.

As illustrated in Figure 2, Gecko performs all content se-
curity checks before resources are requested over the network
through Necko. The downside of this legacy architecture is,
that all the different subsystems in Gecko need to perform
their own security checks before resources are requested
over the network. For example, ImageLoader as well as
ScriptLoader have to opt into the relevant security checks
before initiating a GET request of the image or script to be
loaded, respectively.

Given that a browser needs to enforce numerous security
policies, such a decentralized enforcing mechanism is error-
prone. More generally, each location within the codebase that
initiates a network load has to perform its own security checks.
Worse, less security minded developers are more likely to
forget the required security checks because there is no uniform
API. To complicate things further, since Necko is agnostic to
load context, each time a URI gets redirected, Necko has to
call back into Gecko to perform any kind of security checks.

V. ENFORCING CONTENT SECURITY WITHIN FIREFOX BY
DEFAULT

GECKO

NECKO

Provide Load Context and
Start Resouce Load

Next Resource Load

Redirect
Security Checks

Initiate Resource Load

Fig. 3: Content Security Checks within Firefox by Default:
Gecko provides load context and Necko performs security
by default providing an opt-out mechanism to skip security
checks.



As illustrated in Figure 3, we revamped the security land-
scape of Firefox providing an API that centralizes all the
security checks within Necko.

Instead of performing ad hoc security checks for each
network request within Gecko, our approach enables Gecko
to provide information about the load context so Necko
can perform the relevant security checks in a centralized
manner. Whenever data (script, css, image,...) is about to
be requested from the network, our technique creates an
immutable LoadInfo-object which remains assigned to a
network load throughout the whole loading process, across
redirects.

1 LoadInfo {
2 nsIPrincipal* loadingPrincipal;
3 nsContentPolicyType contentPolicyType;
4 nsSecurityFlags securityFlags;
5 };

Listing 1: LoadInfo-object attached to each network request
within Firefox.

The loadingPrincipal provides the key
element within every LoadInfo-object and can not
be null. The loadingPrincipal represents the
origin context of the resource. For example, the web
page https://www.example.com requests an
image from https://foo.com/bar.jpg then the
loadingPrincipal of that image load will be a principal
object of the origin https://www.example.com.
Ultimately, the loadingPrincipal is responsible for
making the decision whether the load is allowed or denied.

In general, there are three types of principals:

1) Content Principal: A content principal is associated with
some web content and reflects the origin of this content.
Typically, a DOM window has a content principal de-
fined by the origin of the window.

2) System Principal: The system principal passes all secu-
rity checks and is attached to network loads that are
triggered by the browser (system). For example, the
Safe Browsing [?] mechanism within Firefox updates
its blacklist in the background every 30 minutes. A
webpage can not manipulate the URI for updating that
blacklist, hence it’s safe that such a network request
bypasses all security checks because the load is triggered
by the browser (system).

3) Null Principal: The null principal fails almost all secu-
rity checks and can not be accessed by anything other
than itself (except system code). Such a null principal
represents a resource that is only same-origin with itself.
Commonly a null principal represents the origin when
loading a Binary Large Object (Blob). Blobs represent
data that is not necessarily in a JavaScript-native format.

The contentPolicyType describes the type of data
that is about to be loaded over the network, e.g. a
contentPolicyType might be script, image, style, etc.

As mentioned before, the values within the LoadInfo are
immutable and can not be modified throughout the loading
process of a resource.

The contentPolicyType for example allows the Con-
tent Security Policy to identify which CSP directory applies
to the load and also indicates whether the load needs to be
classified as optionally-blockable or blockable mixed content
within the mixed content blocker.

The securityFlags determine what security checks
need to be performed before data is fetched over the network.
For example, the security flag enforce_sop indicates that
the same-origin policy needs to be enforced. As mentioned
in Section II the same origin policy is defined as scheme,
host and port and is very restrictive. If the same origin policy
does not need to be enforced, e.g. for image loads, then
a security-flag of allow_cross_origin indicates that
information can be loaded cross origin, but still triggers access
permission checks before loading the resource to make sure
local resources can not be loaded. Another common security
flag is enforce_cors which indicates that cross origin
loads are allowed, but the cross origin resource sharing headers
need to be inspected before granting the load to succeed.

Important to mention is that Firefox’ security by default
mechanism enforces the most restrictive security checks before
loading a resource over the network. The newly added opt-out
mechanism requires developers to pass specific security flags
to bypass certain security checks.

Ultimately, we added a ContentSecurityManager that
bundles all content security checks within a single file and
allows us to remove sprinkled security checks from each
location initiating a resource load in the codebase. Such a
centralization of security checks further enables novices to get
an overview of security enforcing mechanisms by looking at
a single file instead of browsing the whole codebase to spot
relevant security checks.

Our efforts eliminated a set of vulnerabilities by enforcing
security by default after server-side redirects. As previously
mentioned within Section IV, enforcing security checks after
redirects has been historically complicated within Firefox. One
very illustrative example that our efforts resolved was a CSP
bypass of server-side redirected images when loaded within
a CSS file 1. Instead of fixing the problem specifically for
the one call-site that initiated the load, our architecture allows
to fix the same security risk for all specifications capable of
loading resources at the same time. Our approach allows to do
so because all resource loads have to pass the same security
checks centralized within the ContentSecurityManager.

VI. EVALUATION

A. Engineering Effort

Firefox initiates network loads in around 100 locations in
its codebase, ranging from image, script and style loads, over

1https://bugzilla.mozilla.org/show bug.cgi?id=949706



updating the blacklist for SafeBrowsing to view:source
loads. In addition, Firefox’ internal testing framework initiates
over 400 network loads which all needed to be updated and
equipped with the accurate LoadInfo-object.

In order to retroactively provide such a Security by default
mechanism we landed (up to date) 518 changesets with a
total diff of 126,322 lines of code. Please note that all landed
changesets are generated using hg diff -p -U 8 which
provides eight lines of context and shows the relevant function
for the block.

Over a period of 20 months, one engineer worked full
time on revamping the security landscape of Firefox and
dozens of others provided feedback, guidance and reviewed
the code. Firefox is organized as modules, which means that
one of the peers responsible for the code quality within
the ScriptLoader, StyleLoader, FontLoader, etc.
needs to review and accept the code before it can be merged
into the codebase. Since this project modified code in all
corners of the codebase, we had numerous discussions with
reviewers from all those parts of the codebase. We have
invested approximately 3,500 man-hours to retroactively patch
Firefox to provide a security by default mechanism.

B. Regressions and Web Compatibility

As outlined in Section I enforcing security checks by default
for every resource load has the benefit of providing safe
defaults. That also means that all resource loads are now
subject to the same security checks, including those resource
loads that have been exempt from certain checks previously.

After deploying the newly created ContentSecurityMan-
ager and having the first resource loads rely on our security by
default mechanism community members and volunteers started
to report regressions because certain resources were blocked
from loading on their website. Turns out, in almost all of the
cases our security by default mechanism did not introduce
regressions, but rather web compatibility issues. Those are
issues where web pages started to rely on wrong behavior of
web browsers. A few very illustrative examples of such web
compatibility issues:

(1) The method link prefetch has never been subject to
CSP, but in fact, that method can be used as a channel to
exfiltrate sensitive user data from a webpage and hence CSP
should provide a directive to restrict link prefetch2. For this
particular example we raised an issue with the W3C working
group [W3C, 2014a] and propose a new CSP directive to
govern link prefetch.

(2) Before resource loads became subject to our security
by default mechanism, addons were allowed to load Firefox
internal document type definition (DTD) files. When convert-
ing the nsExpatDriver to enforce security by default, such
DTD loads became subject to more security checks which then
broke several addons3. Even though the new security checks
would be correct to enforce, we decided to relax security

2https://bugzilla.mozilla.org/show bug.cgi?id=1242902
3https://bugzilla.mozilla.org/show bug.cgi?id=1226869

checks for DTD loads4 to keep such legacy addons working
with the latest version of Firefox. Please note, that addons can
not perform any critical actions when loading internal DTD
files. Relaxing those security checks is simply a matter of
keeping those legacy addons up and running.

(3) Loading favicons and performing the right security
checks for favicons has always been crucial within web
browsers. When we converted favicons to rely on our se-
curity by default mechansim we had to update our in-
ternal APIs and extend argument lists to account for the
loadingPrincipal so Firefox can perform accurate se-
curity checks5. Addons, which implement that API using
JavaScript would start breaking, hence we provided a default
argument for five release cycles before we started to block
favicon loads if addons do not explicitly provide the argument
loadingPrincipal6. Please note that addons implement-
ing that API in C++ would encounter a compile error.

In general, whenever we encountered web compatibility
issues, we reached out to high volume sites/addons and let
them know in advance to update their sites/addons so they
remain working without any breakage.

C. Performance Impact

Firefox consists of millions of lines of code where volun-
teers and staff land code on a daily basis. Implementing the
outlined security by default mechanism spanned over a period
of 20 months, hence it’s not feasible to provide meaningful
performance measurements, because an increase or decrease
in performance can not clearly be attributed to our security
by default mechanism. For example, running JS benchmarks
before starting the project and after finishing the project would
not provide any accurate measurements, because so many parts
of the codebase changed within that timeframe and changes
within ScriptLoader or also the ImageLoader might have
a bigger performance impact than revamping the security
landscape.

To summarize, the architectural change we performed in
fact just moved security checks from being performed opt-in to
now being performed opt-out. Hence we argue that introducing
a unified API for performing security checks by default has a
negligible performance impact.

D. Comparison to other Browsers

Colloquially speaking we think that web browsers were
initially designed to retrieve and display information resources
on the web. We argue that the fundamental architecture of
web browsers were not guided by the same security principles
which have become de facto standard in the latest software
products. Looking at the initial release dates of well known
web browsers: Internet Explorer (1995), Firefox (2002), Safari
(2003), Chrome (2008) lets us adumbrate that our approach
might directly translate to their products as well. Since we

4https://bugzilla.mozilla.org/show bug.cgi?id=1228116
5https://bugzilla.mozilla.org/show bug.cgi?id=1119386
6https://bugzilla.mozilla.org/show bug.cgi?id=1227289



do not have access to closed source based browsers we do not
know how their internal security landscape looks like. WebKit
based browsers [WebKit, 1998] however are facing similar
issues we have described in this paper. Especially, enforcing
the right security checks after a server-side redirect have been
known issues. We think that our presented approach of enforc-
ing security checks by default might very well be applicable
to such browsers and we believe that such browsers would
have to invest a similar engineering effort (see Section VI-A)
to revamp their security landscape to perform content security
checks by default.

VII. RELATED WORK

Our work emphasizes on enforcing security mechanisms
by default within a web browser, but was also inspired
by numerous surveys and evaluations of browser secu-
rity mechanisms ranging from the problematic situation of
granting third-party script access to to application inter-
nals [Nikiforakis et al., 2012] to highlighting JavaScript se-
curity mechanisms within a browser [Bielova, 2013].

There has been substantial work on
CSP [Stamm et al., 2010] and why CSP will succeed
or fail [Kerschbaumer et al., 2016], [Fazzini et al., 2015],
[Weissbacher et al., 2014], [Schwenk et al., 2015] and
also large scale analysis of mixed content websites
focusing and highlighting the pitfalls of mixed content
blocking [Chen et al., 2015].

Also relevant, but not directly applicable are the approaches
guiding us towards a formal verification of browser secu-
rity [Akhawe et al., 2010] and formal shim verification for
browsers [Jang et al., 2012].

VIII. CONCLUSION AND OUTLOOK

We have presented an approach that allows to perform
the most restrictive content security checks by default within
a web browser. Our approach attaches immutable informa-
tion about load context to every network. The so called
LoadInfo-object remains attached to the resource load
throughout the whole loading process which further enables
unified security checks after redirects.

We have proven that anchoring a security API retroactively
into a browser rendering engine is possible through enor-
mous engineering effort and conclude that implementing new
standards for resource loading can hook into the provided
API without the risk of jeopardizing a browser’s security
reputation.

ACKNOWLEDGMENT

Thanks to everyone in Security Engineering at Mozilla
for their feedback, reviews, and provoking discussions. In
particular, thanks to Jonas Sicking, Tanvi Vyas, Boris Zbarsky,
Olli Pettay, Dan Veditz, Paul Theriault, Steve Workman, Doug
Turner, and Eric Rescorla. Finally, also thank you to Sid
Stamm and Stefan Brunthaler for their insightful comments.

REFERENCES

[Akhawe et al., 2010] Akhawe, D., Barth, A., Lam, P. E., Mitchell, J., and
Song, D. (2010). Towards a Formal Foundation of Web Security. In
Computer Security Foundations Symposium. IEEE.

[Bielova, 2013] Bielova, N. (2013). Survey on JavaScript security policies
and their enforcement mechanisms in a web browser. In The Journal of
Logic and Algebraic Programming. Elsevier.

[Chen et al., 2015] Chen, P., Nikiforakis, N., Huygens, C., and Desmet, L.
(2015). A Dangerous Mix: Large-scale analysis of mixed-content websites.
In Information Security. Springer.

[Fazzini et al., 2015] Fazzini, M., Saxena, P., and Orso, A. (2015). AutoCSP:
Automatically Retrofitting CSP to Web Applications. In Software Engi-
neering. IEEE.

[IETF, 2012] IETF (2012). HTTP Strict Transport Security (HSTS). https:
//tools.ietf.org/html/rfc6797. (checked: August, 2016).

[Jang et al., 2012] Jang, D., Tatlock, Z., and Lerner, S. (2012). Establishing
Browser Security Guarantees through Formal Shim Verification. In
USENIX Security Symposium, pages 113–128. USENIX.

[Joel Weinberger, Devdatta Akhawe, 2016] Joel Weinberger, Devdatta
Akhawe (2016). Suborigins. https://w3c.github.io/webappsec-suborigins/.
(checked: August, 2016).

[Kerschbaumer et al., 2016] Kerschbaumer, C., Stamm, S., and Brunthaler,
S. (2016). Injecting CSP for Fun and Security. In Information Systems
Security and Privacy. Springer.

[Mike West, Richard Barnes, 2016] Mike West, Richard Barnes (2016).
HSTS Priming. https://mikewest.github.io/hsts-priming/. (checked: Au-
gust, 2016).

[Mozilla, 2016] Mozilla (2016). Telemetry Dashboards (Key-
word=HTTP RESPONSE STATUS CODE). https://telemetry.mozilla.
org/. (checked: August, 2016).

[Nikiforakis et al., 2012] Nikiforakis, N., Invernizzi, L., Kapravelos, A.,
Van Acker, S., Joosen, W., Kruegel, C., Piessens, F., and Vigna, G. (2012).
You Are What You Include: Large-scale Evaluation of Remote JavaScript
Inclusions. In Computer and Communications Security. ACM.

[Schwenk et al., 2015] Schwenk, J., Heiderich, M., and Niemietz, M. (2015).
Waiting for CSP: Securing Legacy Web Applications with JSAgents. In
European Symposium on Research in Computer Security. Springer.

[Stamm et al., 2010] Stamm, S., Sterne, B., and Markham, G. (2010). Rein-
ing in the Web with Content Security Policy. In World Wide Web. ACM.

[W3C, 2004] W3C (2004). Document Object Model (DOM). http://www.
w3.org/TR/2004/REC-DOM-Level-3-Core-20040407/DOM3-Core.pdf.
(checked: August, 2016).

[W3C, 2010a] W3C (2010a). Cross-Origin Resource Sharing (CORS). http:
//www.w3.org/TR/cors. (checked: August, 2016).

[W3C, 2010b] W3C (2010b). Same-Origin Policy (SOP). https://www.w3.
org/Security/wiki/Same Origin Policy. (checked: August, 2016).

[W3C, 2014a] W3C (2014a). Content Security Policy (CSP). http://www.
w3.org/TR/CSP2/. (checked: August, 2016).

[W3C, 2014b] W3C (2014b). Mixed Content. https://www.w3.org/TR/
mixed-content/. (checked: August, 2016).

[W3C, 2014c] W3C (2014c). Subresource Integrity (SRI). https://www.w3.
org/TR/SRI/. (checked: August, 2016).

[W3C, 2015a] W3C (2015a). CSP - Strict Mixed Content Blocking. https://
www.w3.org/TR/mixed-content/#strict-checking. (checked: August, 2016).

[W3C, 2015b] W3C (2015b). Upgrade Insecure Requests. https://www.w3.
org/TR/upgrade-insecure-requests/. (checked: August, 2016).

[W3C, 2016] W3C (2016). CSP - Require SRI for. https://github.com/w3c/
webappsec-subresource-integrity/pull/32. (checked: August, 2016).

[W3C, 2016] W3C (2016). HTTP. http://www.w3.org/Protocols/. (checked:
August, 2016).

[WebKit, 1998] WebKit (1998). Open source web browser engine). https:
//webkit.org/. (checked: August, 2016).

[Weissbacher et al., 2014] Weissbacher, M., Lauinger, T., and Robertson, W.
(2014). Why Is CSP Failing? Trends and Challenges in CSP Adoption. In
Research in Attacks, Intrusions and Defenses. Springer.

[WHATWG, 2015] WHATWG (2015). Fetch Standard. https://github.com/
whatwg/fetch. (checked: August, 2016).


